Contents

1 Factors Limiting Motor Recovery After Facial Nerve Injury 1

1.1 Altered Synaptic Input to the Axotomized Hyperexcitable Facial Motoneurons ... 1

1.2 Excessive Collateral Branching of Axons at the Lesion Site 2

1.3 Role of Cytoskeleton Reorganization During Axonal Regrowth 3

1.4 Exchange of Nerve Impulses Between Adjacent Axons 5

1.5 Vigorous Terminal Sprouting of Axons in the Denervated Muscles 6

1.6 Cellular Correlates of Muscle Reinnervation: the Role of Terminal Schwann Cells ... 6

1.7 Molecular Correlates of Muscle Reinnervation: Role of Sprouting-Inducing Stimuli ... 7

1.8 Questions Still Open .. 7

1.9 Methodological Approach ... 9

2 Attempts to Improve Axonal Pathfinding and Quality of Target Reinnervation 11

2.1 Efforts to Reduce Collateral Axonal Branching at the Lesion Site 12

2.1.1 Neutralization of Trophic Factors at the Lesion Site Reduced Collateral Axonal Branching, but Did Not Improve Recovery of Function .. 12

2.1.2 Local Stabilization of Microtubule Assembly Improved Recovery of Facial Nerve Function After Repair ... 25

2.2 Efforts to Reduce Axonal Sprouting in Denervated Muscles 33

2.2.1 Direct Modification of Microtubule Dynamics in Reinnervated Muscles Failed to Reduce Terminal Axonal Sprouting ... 33

2.2.2 Intraoperative Electrical Stimulation Prior to Reconstructive Surgery Did Not Improve Recovery of Function ... 35

2.2.3 Postoperative Electrical Stimulation of Paralyzed Vibrissal Muscles Did Not Improve Recovery of Function ... 40

2.2.4 Manual Stimulation of Paralyzed Vibrissal Muscles Following Facial Nerve Injury Promoted Full Recovery of Whisking ... 46

2.2.5 Manual Stimulation of Facial Muscles Improved Functional Recovery After Hypoglossal–Facial Anastomosis or Interpositional Nerve Grafting 53

2.2.6 Manual Stimulation of the Suprahyoid–Sublingual Region Diminished Polyinnervation of the Motor Endplates and Improved Recovery of Function After Hypoglossal Nerve Injury in Rats ... 63

2.2.7 Manual Stimulation of Forearm Muscles Did Not Improve Recovery of Motor Function After Injury to a Mixed Peripheral Nerve ... 78

2.2.8 Manually Stimulated Recovery of Motor Function After Facial Nerve Repair Requires Intact Sensory Input ... 84
3 Discussion

3.1 Significance of Axonal Branching at the Lesion Site

3.1.1 Reduced Collateral Branching Failed to Promote Recovery of Whisking Function

3.1.2 Effect of Perturbed Microtubule Assembly

3.2 Unsuccessful Ways to Reduce Intramuscular Axonal Sprouting in Denervated Muscles

3.2.1 Intraoperative Electrical Stimulation (IOES) Prior to Reconstructive Surgery

3.2.2 Postoperative Electrical Stimulation (POES) of Paralyzed Vibrissal Muscles

3.3 Successful Ways to Reduce Intramuscular Axonal Sprouting in Paralyzed Muscles

3.3.1 Manual Stimulation of Paralyzed Vibrissal Muscles After FFA

3.3.2 Manual Stimulation of Paralyzed Facial Muscles After HFA or IPNG

3.3.3 Manual Stimulation of Paralyzed Orbicularis Oculi Muscle After FFA

3.3.4 Manual Stimulation of Paralyzed Suprahyoid–Sublingual Muscles After HHA

3.4 Unsuccessful Manual Stimulation of Paralyzed Forearm Muscles After MMA

3.4.1 Clinical Relevance of Median Nerve Injury

3.4.2 The Effects of Manual Stimulation

3.4.3 Significance of the Intact Trigeminal Sensory Input

4 Conclusions

References

Index
Physical Rehabilitation of Paralysed Facial Muscles: Functional and Morphological Correlates
Angelov, D.N.
2011, XII, 144 p. 22 illus., 14 illus. in color., Softcover
ISBN: 978-3-642-18119-1