Contents

1 Radiation in the Earth Atmosphere ..................................... 1
  1.1 Characteristics of the Radiation Field in the Atmosphere ............ 1
  1.2 Interaction of the Radiation and Atmosphere .......................... 7
  1.3 Radiative Transfer in the Atmosphere ................................ 12
  1.4 Transformation of the Radiation Transfer Equation ................. 17

2 Special Features of Self-surface (Heat) Radiation Forming ........... 19
  2.1 The Black Body Radiation ........................................... 19
  2.2 Basic Equations ....................................................... 20
  2.3 The Brightness Temperature ......................................... 22
  2.4 Practice 1 ................................................................... 24
    2.4.1 Objectives ...................................................... 24
    2.4.2 Software and Set of Input Parameters ......................... 24
    2.4.3 Test Questions ................................................. 25
    2.4.4 Sequential Steps of the Exercise Implementation ............. 25
    2.4.5 Requirements to the Report ................................... 26

3 The Direct Calculation of the Absorption Coefficient of Atmosphere Gases with Using Parameters of Absorption Bands Fine Structure .................................................... 27
  3.1 The Analysis of Physical Processes of the Interaction ............... 27
  3.2 Infrared Spectral Range ............................................... 29
  3.3 The Microwave Spectral Interval ..................................... 33
  3.4 Practice 2 .............................................................. 35
    3.4.1 Objectives ...................................................... 35
    3.4.2 Software and Set of Input Parameters ........................ 36
    3.4.3 Test Questions ................................................. 36
    3.4.4 Sequential Steps of the Exercise Implementation .......... 36
    3.4.5 Requirements to the Report ................................... 38
    3.4.6 Additional Formulas and Relations ............................ 38
4 Calculating Transmission Functions with Modeling
Absorption Bands of Atmospheric Gases ............................................. 39
4.1 The Individual Spectral Line ....................................................... 39
4.2 Elsasser’s Model of the Regular Molecular Band .......................... 41
4.3 The Statistic Molecule Band Model (Goody’s Model) ..................... 42
4.4 Practice 3 .............................................................................. 46
   4.4.1 Objectives ......................................................................... 46
   4.4.2 Software and Set of Input Parameters .................................. 46
   4.4.3 Test Questions .................................................................. 46
   4.4.4 Sequential Steps of the Exercise Implementation ................. 46
   4.4.5 Requirements to the Report .............................................. 46

5 Calculation of the Intensity of Self Heat Radiation of the System “Surface-Atmosphere” ............................................. 47
5.1 Concise Theory .......................................................................... 47
5.2 Transmission Function .............................................................. 48
5.3 Practice 4 ................................................................................. 50
   5.3.1 Objectives ......................................................................... 50
   5.3.2 Software and Set of Input Parameters .................................. 50
   5.3.3 Test Questions .................................................................. 50
   5.3.4 Sequential Steps of the Exercise Implementation ................. 51
   5.3.5 Requirements to the Report .............................................. 51

6 Construction and Operation of the Automated One-Channel IR-Radiometer .................................................. 53
6.1 Concise Theory .......................................................................... 53
6.2 The Function and Observing Conditions of the Automated One-Channel IR-Radiometer ........................................................... 56
6.3 Technical Parameters of the Automated One-Channel IR-Radiometer ........................................................................... 57
6.4 General Instructions on Exploring the IR-Radiometer ..................... 57
6.5 Preparing the IR-Radiometer to Operation ..................................... 57
   6.5.1 The Order of Measurement .................................................. 58
   6.5.2 Testing the IR-Radiometer .................................................... 58
   6.5.3 The Calibration Procedure .................................................. 58
   6.5.4 Test Questions .................................................................. 60
6.6 Practice 5 ................................................................................. 60
   6.6.1 Objectives ......................................................................... 60
   6.6.2 Software and Set of Input Parameters .................................. 61
   6.6.3 Sequential Steps of the Exercise Implementation ................. 61

7 Remote Measurement of the Surface Temperature Field with the Automated One-Channel IR-Radiometer ......................... 63
7.1 Concise Theory .......................................................................... 63
7.2 Determination of the Surface Emissivity ...................................... 64
7.3 Remote Measurement of the Surface Temperature .................. 65
7.4 Polynomial Approximation of the Temperature Field
Measured with One-Channel Automated IR-Radiometer .......... 66
7.5 Control Questions ..................................................... 69
7.6 Practice 6 .............................................................. 69
  7.6.1 Objectives ...................................................... 69
  7.6.2 Software and Set of Input Parameters ......................... 70
  7.6.3 Sequential Steps of the Exercise Implementation .......... 70
  7.6.4 Requirements to the Report .................................... 72

8 Study of Depending the Uncertainty of the Remote Surface
Temperature Retrieval on the Initial Parameters Exactness .... 73
  8.1 Remote Retrieval of the Surface Temperature .................. 73
  8.2 Analytical Approaches to the Estimation of Uncertainty
  of the Surface Temperature T_s Retrieval ....................... 74
  8.3 The Monte-Carlo Method for Estimating the Uncertainty
  of the Surface Temperature Remote Retrieval .................. 76
    8.3.1 Generating Pseudorandom Numbers ......................... 76
    8.3.2 The Mathematical Simulation of the Influence
    of Initial Parameters Random Uncertainties on
    the Exactness of the Surface Temperature Retrieval T_s ...... 78
  8.4 Practice 7 .............................................................. 78
    8.4.1 Objectives ...................................................... 78
    8.4.2 Software and Set of Input Parameters ..................... 80
    8.4.3 Test Questions ................................................. 80
    8.4.4 Sequential Steps of the Exercise Implementation .......... 80
    8.4.5 Requirements to the Report .................................... 81

9 The Thermal Remote Sounding of the Atmosphere .............. 83
  9.1 The Problem Statement ............................................... 83
  9.2 The Analysis of the Direct Problem .............................. 84
  9.3 Possibilities for the Inverse Problem Solution .................. 84
  9.4 The Matrix Form of the Inverse Problem ....................... 87
  9.5 Solution of the Ill-Posed Inverse Problem of the Remote
  Temperature Sensing of the Atmosphere ......................... 90
  9.6 Numerical Closed Successive Experiment ....................... 93
  9.7 Practice 8 .............................................................. 94
    9.7.1 Objectives ...................................................... 94
    9.7.2 Software and Set of Input Parameters ..................... 94
    9.7.3 Sequential Steps of the Exercise Implementation .......... 96

10 Calculating Optical Characteristics of Atmospheric Aerosol ...... 99
  10.1 Atmospheric Aerosol ............................................... 99
  10.2 Interaction Between Radiation and Aerosol Particle ....... 100
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>Ensemble of Aerosol Particles</td>
<td>100</td>
</tr>
<tr>
<td>10.4</td>
<td>Calculation of Optical Characteristics of Aerosol Particles Ensembles</td>
<td>102</td>
</tr>
<tr>
<td>10.5</td>
<td>Practice 9</td>
<td>103</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Objectives</td>
<td>103</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Sequential Steps of the Exercise Implementation</td>
<td>103</td>
</tr>
<tr>
<td>11</td>
<td>Calculating Solar Radiative Characteristics in Clouds with Asymptotic Formulas of the Radiative Transfer Theory</td>
<td>105</td>
</tr>
<tr>
<td>11.1</td>
<td>The Basic Formulas</td>
<td>105</td>
</tr>
<tr>
<td>11.2</td>
<td>Weak True Absorption of Solar Radiation</td>
<td>108</td>
</tr>
<tr>
<td>11.3</td>
<td>The Analytical Presentation of the Reflection Function</td>
<td>110</td>
</tr>
<tr>
<td>11.4</td>
<td>Diffused Radiation Field Within the Cloud Layer</td>
<td>112</td>
</tr>
<tr>
<td>11.5</td>
<td>Case of the Conservative Scattering</td>
<td>113</td>
</tr>
<tr>
<td>11.6</td>
<td>Error Analysis</td>
<td>114</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Optical Model of the Cloud Layer</td>
<td>116</td>
</tr>
<tr>
<td>11.7</td>
<td>Practice 10</td>
<td>117</td>
</tr>
<tr>
<td>11.7.1</td>
<td>Objectives</td>
<td>117</td>
</tr>
<tr>
<td>11.7.2</td>
<td>Sequential Steps of the Exercise Implementation</td>
<td>117</td>
</tr>
<tr>
<td>11.7.3</td>
<td>Requirements to the Report</td>
<td>118</td>
</tr>
<tr>
<td>12</td>
<td>Calculating Solar Irradiance with Eddington Method</td>
<td>119</td>
</tr>
<tr>
<td>12.1</td>
<td>Eddington Approximation</td>
<td>119</td>
</tr>
<tr>
<td>12.2</td>
<td>Considering the Surface Reflection</td>
<td>122</td>
</tr>
<tr>
<td>12.3</td>
<td>Calculation of Radiation Characteristics</td>
<td>123</td>
</tr>
<tr>
<td>12.4</td>
<td>The Atmosphere Optical Model</td>
<td>124</td>
</tr>
<tr>
<td>12.5</td>
<td>Practice 11</td>
<td>125</td>
</tr>
<tr>
<td>12.5.1</td>
<td>Objectives</td>
<td>125</td>
</tr>
<tr>
<td>12.5.2</td>
<td>Sequential Steps of the Exercise Implementation</td>
<td>125</td>
</tr>
<tr>
<td>12.5.3</td>
<td>Requirements to the Report</td>
<td>127</td>
</tr>
<tr>
<td>13</td>
<td>Monte-Carlo Method for the Solar Irradiance Calculation</td>
<td>129</td>
</tr>
<tr>
<td>13.1</td>
<td>The Basic Idea of Monte-Carlo Method</td>
<td>129</td>
</tr>
<tr>
<td>13.2</td>
<td>Simulating Random Events and Values</td>
<td>130</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Simulating the Photon Free Path</td>
<td>131</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Simulating Photon-Atmosphere Interaction</td>
<td>131</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Simulating Photon-Surface Interaction</td>
<td>132</td>
</tr>
<tr>
<td>13.3</td>
<td>Monte-Carlo Method General Algorithm</td>
<td>133</td>
</tr>
<tr>
<td>13.4</td>
<td>Modifications of Monte-Carlo Method</td>
<td>134</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Azimuthal Isotropy of Irradiances</td>
<td>135</td>
</tr>
<tr>
<td>13.5</td>
<td>Additional Possibilities of the Monte-Carlo Method</td>
<td>136</td>
</tr>
<tr>
<td>13.6</td>
<td>Practice 12</td>
<td>136</td>
</tr>
<tr>
<td>13.6.1</td>
<td>Objectives</td>
<td>136</td>
</tr>
</tbody>
</table>
14 Calculating Radiative Characteristics with the Single Scattering Approximation .............................................. 139
  14.1 Expressing the Radiative Intensity (Radiance) in Terms of the Source Function .............................................. 139
  14.2 The Approximation of the Single Scattering – The General Case .............................................. 140
  14.3 The Single Scattering Approximation at Top and Base of the Homogeneous Atmosphere ...................................... 141
  14.4 The Surface Reflection .............................................. 142
  14.5 The Single Scattering Approximation Algorithm .............................................. 143
  14.6 Practice 13 ........................................................................ 144
    14.6.1 Objectives .............................................. 144
    14.6.2 Applicability Ranges and the Input Optical Model .............................................. 144
    14.6.3 Sequential Steps of the Exercise Implementation .............................................. 145
    14.6.4 Requirements to the Report .............................................. 146

15 Analysis of the Reflection Anisotropy. Case Study: The Numerical Simulation of Waving Water Surface .................. 147
  15.1 Types of Reflection from Natural Surfaces .............................................. 147
  15.2 Statistical Simulation of the Waving Water Surface .............................................. 148
  15.3 Laws of the Ideal Mirror Reflection .............................................. 149
  15.4 Determining the Orientation of Elementary Plane .............................................. 150
  15.5 The Spectral Brightness Coefficient and the Albedo of the Waving Surface .............................................. 151
  15.6 Practice 14 ........................................................................ 152
    15.6.1 Objectives .............................................. 152
    15.6.2 Sequential Steps of the Exercise Implementation .............................................. 153
    15.6.3 Requirements to the Report .............................................. 154

16 Quantification and Analysis of the Spectral Composition of Subsurface Solar Radiation Diffuse Reflectance in Cases of Deep and Shallow Water Bodies .............................................. 155
  16.1 Concise Theory .............................................. 155
  16.2 Mechanisms of Interactions of Solar Light with Absorbing and Scattering Aquatic Media .............................................. 160
  16.3 Practice 15 ........................................................................ 166
    16.3.1 Objectives .............................................. 166
    16.3.2 Software and Set of Input Parameters .............................................. 166
    16.3.3 Sequential Steps of the Exercise Implementation .............................................. 166
    16.3.4 Requirements to the Report .............................................. 167
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Simulations and Analyses of Variations in Colorimetric Properties of Natural Waters with Specific Reference to Waters with Significant Spatial Heterogeneity</td>
<td>169</td>
</tr>
<tr>
<td>17.1</td>
<td>Formation of Water Color: A Concise Description of the Physical/Theoretical Background</td>
<td>169</td>
</tr>
<tr>
<td>17.2</td>
<td>Practice 16</td>
<td>172</td>
</tr>
<tr>
<td>17.2.1</td>
<td>Objective</td>
<td>172</td>
</tr>
<tr>
<td>17.2.2</td>
<td>Software and Set of Input Parameters</td>
<td>172</td>
</tr>
<tr>
<td>17.2.3</td>
<td>Sequential Steps of the Exercise Implementation</td>
<td>172</td>
</tr>
<tr>
<td>17.2.4</td>
<td>Requirements to the Report</td>
<td>173</td>
</tr>
<tr>
<td>18</td>
<td>Retrieval of CPA Concentrations from the Spectral Composition of Subsurface Water Column Diffuse Reflectance: Application to Environmental Remote Sensing Tasks</td>
<td>175</td>
</tr>
<tr>
<td>18.1</td>
<td>Methods of Retrieval of Water Quality from Remotely Sensed Data in the Visible</td>
<td>175</td>
</tr>
<tr>
<td>18.2</td>
<td>Practice 17</td>
<td>178</td>
</tr>
<tr>
<td>18.2.1</td>
<td>Objectives</td>
<td>178</td>
</tr>
<tr>
<td>18.2.2</td>
<td>Software and Set of Input Parameters</td>
<td>178</td>
</tr>
<tr>
<td>18.2.3</td>
<td>Sequential Steps of the Exercise Implementation</td>
<td>179</td>
</tr>
<tr>
<td>18.2.4</td>
<td>Requirements to the Report</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>183</td>
</tr>
</tbody>
</table>
Remote Sensing of the Environment and Radiation Transfer
An Introductory Survey
Kuznetsov, A.; Melnikova, I.; Pozdnyakov, D.V.; Seroukhova, O.; Vasilyev, A.
2012, XIV, 186 p. With online files/update., Hardcover
ISBN: 978-3-642-14898-9