Part II Drives and Actuators

3 Fault diagnosis of electrical drives

3.1 Direct-current motor (DC)

3.1.1 Structure and models of a DC motor

3.1.2 Fault detection with parity equations

3.1.3 Fault detection with parameter estimation

3.1.4 Experimental results for fault detection (SELECT)

3.1.5 Experimental results for fault diagnosis with a learning fault-symptom tree

3.1.6 Conclusions

3.2 Alternating-current motor (AC)

3.2.1 Structure and models of induction motors (asynchronous motors)

3.2.2 Signal-based fault detection of the power electronics

3.2.3 Model-based fault detection of the AC motor

3.2.4 Conclusions

4 Fault diagnosis of electrical actuators

4.1 Electromagnetic actuator

4.1.1 Position control

4.1.2 Fault detection with parameter estimation

4.2 Electrical automotive throttle valve actuator

4.2.1 Structure and models of the actuator

4.2.2 Input test cycle for quality control

4.2.3 Fault detection with parameter estimation

4.2.4 Fault detection with parity equation

4.2.5 Fault diagnosis

4.2.6 Fault-diagnosis equipment

4.2.7 Conclusions

4.3 Brushless DC motor and aircraft cabin pressure valve

4.3.1 Structure and models

4.3.2 Fault detection with parameter estimation

4.3.3 Fault detection with parity equations

4.3.4 Conclusions
5 Fault diagnosis of fluidic actuators .. 105
 5.1 Hydraulic servo axis ... 105
 5.1.1 Hydraulic servo axis structure .. 106
 5.1.2 Faults of hydraulic servo axes 106
 5.1.3 Models of spool valve and cylinder 111
 5.1.4 Fault detection and diagnosis of valve and cylinder 115
 5.1.5 Conclusions .. 121
 5.2 Pneumatic actuators ... 121
 5.2.1 Pneumatic-actuator construction 122
 5.2.2 Faults of pneumatic valves .. 124
 5.2.3 Models of pneumatic valves ... 125
 5.2.4 Fault detection with valve characteristics 128
 5.2.5 Fault detection of flow valves with pneumatic position controller .. 130
 5.2.6 Fault detection of flow valves with electronic position controller .. 138
 5.2.7 Conclusions .. 139

Part III Machines and Plants

6 Fault diagnosis of pumps ... 143
 6.1 Centrifugal pumps ... 143
 6.1.1 State of the art in pump supervision and fault detection 143
 6.1.2 Models of centrifugal pumps and pipe systems 146
 6.1.3 Fault detection with parameter estimation 149
 6.1.4 Fault detection with nonlinear parity equations and parameter estimation .. 156
 6.1.5 Fault detection with vibration sensors 165
 6.1.6 Conclusions .. 169
 6.2 Reciprocating pumps ... 170
 6.2.1 Structure of a diaphragm pump 171
 6.2.2 Models of a diaphragm pump ... 172
 6.2.3 Fault detection and fault diagnosis of the hydraulic pump ... 172
 6.2.4 Fault detection of the pump drive 177
 6.2.5 Conclusions .. 178

7 Leak detection of pipelines .. 181
 7.1 State of the art in pipeline supervision 181
 7.2 Models of pipelines ... 182
 7.3 Model-based leak detection ... 187
 7.3.1 Leak detection with state observers 188
 7.3.2 Leak detection with mass balance and correlation analysis for liquid pipelines .. 190
 7.3.3 Leak detection for gas pipelines 195
Fault-Diagnosis Applications
Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems
Isermann, R.
2011, XVI, 354 p., Hardcover
ISBN: 978-3-642-12766-3