Contents

1 Introduction 1

1.1 The Robot Mapping Problem 2
1.2 The Spatial Representation Perspective 3
1.3 The Uncertainty Handling Perspective 3
1.4 Combining Representation and Uncertainty Handling 4
1.5 Route Graphs Based on Generalized Voronoi Diagrams 5
1.6 Theses, Goals, and Contributions of This Book 6
1.7 Outline of This Book 8

2 Robot Mapping 11

2.1 A Spatial Model for What? 14

2.1.1 Navigation 14
2.1.2 Systematic Exploration 16
2.1.3 Communication 16

2.2 Correctness, Consistency, and Criteria 17

2.2.1 Extractability and Maintainability 18
2.2.2 Information Adequacy 18
2.2.3 Efficiency and Scalability 18

2.3 Spatial Representation and Organization 19

2.3.1 Basic Spatial Representation Approaches 19
2.3.2 Coordinate-Based Representations 20
2.3.3 Relational Representations 26
2.3.4 Organizational Forms 31

2.4 Uncertainty Handling Approaches 36

2.4.1 Incremental Approaches 37
2.4.2 Multi-pass Approaches 41

2.5 Conclusions 42

3 Voronoi-Based Spatial Representations 45

3.1 Voronoi Diagram and Generalized Voronoi Diagram 45
3.2 Generalized Voronoi Graph and Embedded Generalized Voronoi Graph 47
3.3 Annotated Generalized Voronoi Graphs 49
3.4 Hierarchical Annotated Voronoi Graphs 50
3.5 Partial and Local Voronoi Graphs .. 51
3.6 An Instance of the HAGVG .. 53
3.7 Stability Problems of Voronoi-Based Representations 54
3.8 Strengths and Weaknesses of the Representation 55

4 Simplification and Hierarchical Voronoi Graph Construction 59
4.1 Relevance Measures for Voronoi Nodes 60
4.2 Computation of Relevance Values .. 64
4.3 Voronoi Graph Simplification .. 69
4.4 HAGVG Construction ... 72
4.5 Admitting Incomplete Information 73
4.6 Improving the Efficiency of the Relevance Computation 75
4.7 Incremental Computation ... 80
4.8 Application Scenarios ... 82
4.8.1 Incremental HAGVG Construction 82
4.8.2 Removal of Unstable Parts ... 82
4.8.3 Automatic Route Graph Generation from Vector Data 82

5 Voronoi Graph Matching for Data Association 85
5.1 The Data Association Problem ... 85
5.1.1 Data Associations and the Interpretation Tree 86
5.1.2 Data Association Approaches ... 88
5.2 AGVG Matching Based on Ordered Tree Edit Distance 90
5.2.1 Ordered Tree Matching Based on Edit Distance 92
5.2.2 Overall Edit Distance .. 97
5.2.3 Modeling Removal and Addition Costs 98
5.2.4 Optimizations .. 99
5.2.5 Complexity .. 99
5.3 Incorporating Constraints .. 100
5.3.1 Unary Constraints Based on Pose Estimates and Node Similarity 101
5.3.2 Binary Constraints Based on Relative Distance 104
5.3.3 Ternary Angle Constraints ... 106
5.4 Map Merging Based on a Computed Data Association 109

6 Global Mapping: Minimal Route Graphs Under Spatial Constraints 113
6.1 Theoretical Problem ... 114
6.2 Branch and Bound Search for Minimal Model Finding 123
6.2.1 Search Through the Interpretation Tree 124
6.2.2 Best-First Branch and Bound Search Based on Solution Size 126
6.2.3 Expand and Update Operations 128
6.2.4 Two Variants of the Minimal Model Finding Problem 134
6.3 Pruning Based on Spatial Constraints 136
6.3.1 Checking Planarity .. 136
6.3.2 Checking Spatial Consistency 139
6.3.3 Incorporation into the Search Algorithm 143
6.4 Combining Minimal Route Graph Mapping and AGVG Representations 144

7 Experimental Evaluation .. 147
7.1 Relevance Assessment and HAGVG Construction 147
7.1.1 Efficiency of the Relevance Computation Algorithms 147
7.1.2 Combining the HAGVG Construction Methods with a Grid-Based FastSLAM Approach 150
7.2 Evaluation of the Voronoi-Based Data Association 152
7.3 Evaluation of the Minimal Route Graph Approach 156
7.3.1 Solution Quality ... 157
7.3.2 Pruning Efficiency ... 160
7.3.3 Absolute vs. Relative Direction Information 163
7.3.4 Overall Computational Costs 166
7.3.5 Application to Real AGVG Data 168
7.4 A Complete Multi-hypothesis Mapping System 170
7.4.1 Local Metric Mapping and Local AGVG Computation ... 170
7.4.2 Data Association for Node Tracking and History Generation ... 171
7.4.3 Global Mapping and Post-processing 171
7.4.4 Experiments .. 171
7.4.5 Discussion .. 172

8 Conclusions and Outlook .. 177
8.1 Summary and Conclusions 177
8.1.1 Extraction and HAGVG Construction 178
8.1.2 Data Association and Matching 179
8.1.3 Minimal Route Graph Model Finding 179
8.1.4 Complete Mapping Approaches 180
8.2 Outlook .. 181
8.2.1 Extensions of the Work Described in Chaps. 3–6 181
8.2.2 Combining Voronoi Graphs and Uncertainty Handling ... 182
8.2.3 Challenges for Voronoi-Based Representation Approaches 183
8.2.4 Challenges for Qualitative Spatial Reasoning 185
8.2.5 The Future: Towards Spatially Competent Mobile Robots . 185

A Mapping as Probabilistic State Estimation 187
A.1 The Recursive Bayes Filter 188
A.2 Parametric Filters .. 190
A.2.1 Kalman Filter .. 190
A.2.2 Extended Kalman Filter 191
A.3 Nonparametric Filters ... 192
A.3.1 Particle Filter	192
A.3.2 Rao-Blackwellized Particle Filter and FastSLAM	193
B Qualitative Spatial Reasoning	195
B.1 Qualitative Constraint Calculi	195
B.2 Weak vs. Strong Operations	198
B.3 Constraint Networks and Consistency	198
B.4 Checking Consistency	200

Bibliography 203
Hierarchical Voronoi Graphs
Spatial Representation and Reasoning for Mobile Robots
Wallgrün, J.O.
2010, XXIII, 218 p., Hardcover
ISBN: 978-3-642-10302-5