Contents

1. Introduction

1.1 A Survey of Semiconductors .. 2
1.1.1 Elemental Semiconductors .. 2
1.1.2 Binary Compounds ... 2
1.1.3 Oxides ... 3
1.1.4 Layered Semiconductors .. 3
1.1.5 Organic Semiconductors .. 4
1.1.6 Magnetic Semiconductors .. 4
1.1.7 Other Miscellaneous Semiconductors 4
1.2 Growth Techniques ... 5
1.2.1 Czochralski Method ... 5
1.2.2 Bridgman Method ... 6
1.2.3 Chemical Vapor Deposition 7
1.2.4 Molecular Beam Epitaxy .. 8
1.2.5 Fabrication of Self-Organized Quantum Dots
by the Stranski–Krastanow Growth Method 11
1.2.6 Liquid Phase Epitaxy .. 13
Summary .. 14
Periodic Table of “Semiconductor-Forming” Elements 15

2. Electronic Band Structures

2.1 Quantum Mechanics .. 18
2.2 Translational Symmetry and Brillouin Zones 20
2.3 A Pedestrian’s Guide to Group Theory 25
2.3.1 Definitions and Notations ... 25
2.3.2 Symmetry Operations of the Diamond
and Zinc-Blende Structures .. 30
2.3.3 Representations and Character Tables 32
2.3.4 Some Applications of Character Tables 40
2.4 Empty Lattice or Nearly Free Electron Energy Bands 48
2.4.1 Nearly Free Electron Band Structure
in a Zinc-Blende Crystal .. 48
2.4.2 Nearly Free Electron Energy Bands in Diamond Crystals 52
2.5 Band Structure Calculations by Pseudopotential Methods 58
2.5.1 Pseudopotential Form Factors
in Zinc-Blende- and Diamond-Type Semiconductors 61
2.5.2 Empirical and Self-Consistent Pseudopotential Methods 66
2.6 The \(k \cdot p \) Method of Band-Structure Calculations 68
 2.6.1 Effective Mass of a Nondegenerate Band
 Using the \(k \cdot p \) Method 69
 2.6.2 Band Dispersion near a Degenerate Extremum:
 Top Valence Bands in Diamond- and Zinc-Blende-Type Semiconductors 71
2.7 Tight-Binding or LCAO Approach to the Band Structure
 of Semiconductors .. 83
 2.7.1 Molecular Orbitals and Overlap Parameters 83
 2.7.2 Band Structure of Group-IV Elements
 by the Tight-Binding Method 87
 2.7.3 Overlap Parameters and Nearest-Neighbor Distances 94
Problems ... 96
Summary .. 105

3. Vibrational Properties of Semiconductors,
 and Electron–Phonon Interactions 107
 3.1 Phonon Dispersion Curves of Semiconductors 110
 3.2 Models for Calculating Phonon Dispersion Curves
 of Semiconductors .. 114
 3.2.1 Force Constant Models 114
 3.2.2 Shell Model ... 114
 3.2.3 Bond Models ... 115
 3.2.4 Bond Charge Models 117
 3.3 Electron–Phonon Interactions 121
 3.3.1 Strain Tensor and Deformation Potentials 122
 3.3.2 Electron–Acoustic-Phonon Interaction
 at Degenerate Bands 127
 3.3.3 Piezoelectric Electron–Acoustic-Phonon Interaction 130
 3.3.4 Electron–Optical-Phonon
 Deformation Potential Interactions 131
 3.3.5 Fröhlich Interaction 133
 3.3.6 Interaction Between Electrons and Large-Wavevector
 Phonons: Intervalley Electron–Phonon Interaction 135
Problems ... 137
Summary .. 158

4. Electronic Properties of Defects 159
 4.1 Classification of Defects 160
 4.2 Shallow or Hydrogenic Impurities 161
 4.2.1 Effective Mass Approximation 162
 4.2.2 Hydrogenic or Shallow Donors 166
 4.2.3 Donors Associated with Anisotropic Conduction Bands 171
 4.2.4 Acceptor Levels in Diamond- and Zinc-Blende-Type Semiconductors 174
 4.3 Deep Centers ... 180
4.3.1 Green’s Function Method for Calculating Defect Energy Levels 183
4.3.2 An Application of the Green’s Function Method: Linear Combination of Atomic Orbitals 188
4.3.3 Another Application of the Green’s Function Method: Nitrogen in GaP and GaAsP Alloys 192
4.3.4 Final Note on Deep Centers 197
Problems .. 198
Summary .. 202

5. Electrical Transport .. 203
5.1 Quasi-Classical Approach .. 203
5.2 Carrier Mobility for a Nondegenerate Electron Gas .. 206
5.2.1 Relaxation Time Approximation .. 206
5.2.2 Nondegenerate Electron Gas in a Parabolic Band .. 207
5.2.3 Dependence of Scattering and Relaxation Times on Electron Energy .. 208
5.2.4 Momentum Relaxation Times .. 209
5.2.5 Temperature Dependence of Mobilities .. 220
5.3 Modulation Doping .. 223
5.4 High-Field Transport and Hot Carrier Effects .. 225
5.4.1 Velocity Saturation .. 227
5.4.2 Negative Differential Resistance .. 228
5.4.3 Gunn Effect .. 230
5.5 Magneto-Transport and the Hall Effect .. 232
5.5.1 Magneto-Conductivity Tensor .. 232
5.5.2 Hall Effect .. 234
5.5.3 Hall Coefficient for Thin Film Samples (van der Pauw Method) .. 235
5.5.4 Hall Effect for a Distribution of Electron Energies .. 236
Problems .. 237
Summary .. 241

6. Optical Properties I .. 243
6.1 Macroscopic Electrodynamics .. 244
6.1.1 Digression: Units for the Frequency of Electromagnetic Waves .. 247
6.1.2 Experimental Determination of Optical Functions .. 247
6.1.3 Kramers–Kronig Relations .. 250
6.2 The Dielectric Function .. 253
6.2.1 Experimental Results .. 253
6.2.2 Microscopic Theory of the Dielectric Function .. 254
6.2.3 Joint Density of States and Van Hove Singularities .. 261
6.2.4 Van Hove Singularities in ε_i .. 262
6.2.5 Direct Absorption Edges .. 268
6.2.6 Indirect Absorption Edges .. 269
6.2.7 “Forbidden” Direct Absorption Edges 273

6.3 Excitons 276

6.3.1 Exciton Effect at \(M_0 \) Critical Points 279
6.3.2 Absorption Spectra of Excitons 282
6.3.3 Exciton Effect at \(M_1 \) Critical Points or Hyperbolic Excitons 288
6.3.4 Exciton Effect at \(M_3 \) Critical Points 291

6.4 Phonon-Polaritons and Lattice Absorption 292

6.4.1 Phonon-Polaritons 295
6.4.2 Lattice Absorption and Reflection 298
6.4.3 Multiphonon Lattice Absorption 299
6.4.4 Dynamic Effective Ionic Charges in Heteropolar Semiconductors 303

6.5 Absorption Associated with Extrinsic Electrons 305

6.5.1 Free-Carrier Absorption in Doped Semiconductors 306
6.5.2 Absorption by Carriers Bound to Shallow Donors and Acceptors 311

6.6 Modulation Spectroscopy 315

6.6.1 Frequency Modulated Reflectance and Thermoreflectance 319
6.6.2 Piezoreflectance 321
6.6.3 Electrorefelectance (Franz–Keldysh Effect) 322
6.6.4 Photoreflectance 329
6.6.5 Reflectance Difference Spectroscopy 332

6.7 Addendum (Third Edition): Dielectric Function 333

Problems 342
Summary 343

7. Optical Properties II 345

7.1 Emission Spectroscopies 345

7.1.1 Band-to-Band Transitions 351
7.1.2 Free-to-Bound Transitions 354
7.1.3 Donor–Acceptor Pair Transitions 356
7.1.4 Excitons and Bound Excitons 362
7.1.5 Luminescence Excitation Spectroscopy 369

7.2 Light Scattering Spectroscopies 375

7.2.1 Macroscopic Theory of Inelastic Light Scattering by Phonons 375
7.2.2 Raman Tensor and Selection Rules 378
7.2.3 Experimental Determination of Raman Spectra 385
7.2.4 Microscopic Theory of Raman Scattering 394
7.2.5 A Detour into the World of Feynman Diagrams 395
7.2.6 Brillouin Scattering 398
7.2.7 Experimental Determination of Brillouin Spectra 400
7.2.8 Resonant Raman and Brillouin Scattering 401

Problems 422
Summary 426
8. Photoelectron Spectroscopy

8.1 Photoemission

8.1.1 Angle-Integrated Photoelectron Spectra of the Valence Bands

8.1.2 Angle-Resolved Photoelectron Spectra of the Valence Bands

8.1.3 Core Levels

8.2 Inverse Photoemission

8.3 Surface Effects

8.3.1 Surface States and Surface Reconstruction

8.3.2 Surface Energy Bands

8.3.3 Fermi Level Pinning and Space Charge Layers

Problems

Summary

9. Effect of Quantum Confinement on Electrons and Phonons in Semiconductors

9.1 Quantum Confinement and Density of States

9.2 Quantum Confinement of Electrons and Holes

9.2.1 Semiconductor Materials for Quantum Wells and Superlattices

9.2.2 Classification of Multiple Quantum Wells and Superlattices

9.2.3 Confinement of Energy Levels of Electrons and Holes

9.2.4 Some Experimental Results

9.3 Phonons in Superlattices

9.3.1 Phonons in Superlattices: Folded Acoustic and Confined Optic Modes

9.3.2 Folded Acoustic Modes: Macroscopic Treatment

9.3.3 Confined Optical Modes: Macroscopic Treatment

9.3.4 Electrostatic Effects in Polar Crystals: Interface Modes

9.4 Raman Spectra of Phonons in Semiconductor Superlattices

9.4.1 Raman Scattering by Folded Acoustic Phonons

9.4.2 Raman Scattering by Confined Optical Phonons

9.4.3 Raman Scattering by Interface Modes

9.4.4 Macroscopic Models of Electron–LO Phonon (Frohlich) Interaction in Multiple Quantum Wells

9.5 Electrical Transport: Resonant Tunneling

9.5.1 Resonant Tunneling Through a Double-Barrier Quantum Well

9.5.2 I–V Characteristics of Resonant Tunneling Devices

9.6 Quantum Hall Effects in Two-Dimensional Electron Gases

9.6.1 Landau Theory of Diamagnetism in a Three-Dimensional Free Electron Gas

9.6.2 Magneto-Conductivity of a Two-Dimensional Electron Gas: Filling Factor
Fundamentals of Semiconductors
Physics and Materials Properties
YU, P.; Cardona, M.
2010, XXII, 778 p., Hardcover
ISBN: 978-3-642-00709-5