Solid organ transplantation is now the treatment of choice for end-stage kidney, heart, liver, pancreas, and lung diseases and increasingly so for intestinal disease. Experimental transplantation in animals provided the impetus for transplantation in humans, first with the kidney [1–3]. A brief account of successful human “experiments” in the time frame of the last 50 years is given in the Table 1 below. These successes were preceded by multiple failures or short-lived grafts. It is through the combined efforts of many researchers, surgeons, and the development of successful immunosuppressive drugs that graft survival and patient outcomes improved [4, 5]. More than a dozen Nobel prices since 1901 were awarded to those who worked on the fundaments of transplantation [6]. Currently, the search for agents that perfect induction of tolerance is intensified and transplant services and organ sharing continue to improve [7]. In this remarkable journey of pioneer surgeons, transplant immunologists, and chemists, pathologists were instrumental in recognizing allograft rejection, and more recently, defining the criteria that distinguish acute from chronic rejection, rejection from drug toxicity, and recurrent from de novo disease. Pathology has also been in the forefront of the endeavor of new therapies participating in the evaluation of the effects of drugs on tissue, thus maintaining clear and ethical views in the search for better treatments. Pathologic interpretation of the transplanted organs in humans was first described for the kidney in the 1960s by Gustav Dammin at Harvard and Kendick Porter at St. Mary’s Hospital in London [8, 9]. It soon became the most reliable tool to distinguish rejection from other complications of transplantation such as drug toxicity, recurrent/de novo disease, and infection. Transplantation pathology is now an indispensable guide to prompt therapy. As the field of transplantation advances, so is transplant pathology. New criteria for donors and the effectiveness of alternative immunosuppression drugs are better understood by histopathologic study of the tissue immune response in the graft, short- and long-term. Innovative approaches of immune tolerance, such as mixed allogeneic chimerism, monoclonal antibodies, and fusion proteins and stem cells for immune modulation, may in the next decade become a reality, therefore changing the pathology of grafted organs [10–12]. Finally, new molecular mechanisms to explain early dysfunction or late graft loss may eventually become diagnostic tools.

This book aims to present a thorough account of the pathology of solid organ transplantation in the down of the twenty-first century. The book is organized in a detailed practical diagnostic approach which we hope the reader will find didactic and clear. Molecular studies are discussed when relevant to diagnosis. Introductory chapters are written by our clinical colleagues who describe the immune response from their perspective on treatment and management issues. A chapter on xenotransplantation and
organogenesis is a forecast for possible solutions in organ transplantation and one that will, if successful, may change the field and patient care.

We would like to thank with gratitude all our colleagues who contributed their invaluable time and experience. We hope that the book will be useful to our colleagues, also in countries around the world, where transplantation is becoming increasingly more available and frequently the only organ replacement modality within financial reach.

St. Louis, MO, USA
Helen Liapis
Hanlin L. Wang
References

Pathology of Solid Organ Transplantation
Liapis, H.; Wang, H.L. (Eds.)
2011, XII, 405 p., Hardcover
ISBN: 978-3-540-79342-7