Contents

Chapters marked with * may form the matter of a basic introductory course

Part I Stellar Equilibrium With and Without Rotation

1 **The Mechanical Equilibrium of Stars** 3
 1.1 Momentum and Continuity Equations 3
 1.1.1 Hydrodynamical Equations 3
 1.1.2 Hydrostatic Equilibrium 5
 1.1.3 Mass Conservation and Continuity Equation 5
 1.1.4 Lagrangian and Eulerian Variables 6
 1.1.5 Estimates of Pressure, Temperature and Timescales 7
 1.2 The Potential Energy .. 10
 1.2.1 Relation to the Potential and Poisson Equation 11
 1.2.2 The Potential Energy as a Function of Pressure 12
 1.2.3 The Internal Stellar Temperature 13
 1.3 The Virial Theorem for Stars 13
 1.3.1 Star with Perfect Gas Law 14
 1.3.2 Star with a General Equation of State 16
 1.3.3 Slow Contraction, the Kelvin–Helmholtz Timescale 17

2 **The Mechanical Equilibrium of Rotating Stars** 19
 2.1 Equilibrium Configurations 19
 2.1.1 From Maclaurin Spheroids to the Roche Models 19
 2.1.2 Hydrostatic Equilibrium for Solid Body Rotation 20
 2.1.3 Stellar Surface and Gravity 22
 2.1.4 Critical Velocities 24
 2.1.5 Polar Radius as a Function of Rotation 27
 2.2 Equations of Stellar Structure for Shellular Rotation 29
 2.2.1 Properties of the Isobars 30
 2.2.2 Hydrostatic Equilibrium 31
 2.2.3 Continuity Equation 32
 2.2.4 Equation of the Surface for Shellular Rotation 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>The Energetic Equilibrium of Stars</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>The Radiative Transfer</td>
<td>35</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Equation of Radiative Transfer</td>
<td>36</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Radiation Properties in Stellar Interiors</td>
<td>37</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Transfer Equation</td>
<td>38</td>
</tr>
<tr>
<td>3.1.4</td>
<td>The Rosseland Mean Opacity</td>
<td>40</td>
</tr>
<tr>
<td>3.1.5</td>
<td>The Mass–Luminosity Relation</td>
<td>41</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Photon Travel Times and $M-L$ Relation</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Energetic Equilibrium of a Star</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Energy Generation Rate from Gravitational Contraction.</td>
<td>47</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Contraction of a Star with Perfect Gas</td>
<td>48</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Case of a General Equation of State</td>
<td>48</td>
</tr>
<tr>
<td>3.3.3</td>
<td>The Entropy of Mixing</td>
<td>50</td>
</tr>
<tr>
<td>3.3.4</td>
<td>The Difference of Specific Heats</td>
<td>51</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Adiabatic Gradient for Constant μ</td>
<td>52</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Adiabatic Gradient for Variable μ</td>
<td>53</td>
</tr>
<tr>
<td>3.4</td>
<td>Changes of T and ϱ for Non-adiabatic Contraction</td>
<td>53</td>
</tr>
<tr>
<td>3.5</td>
<td>Secular Stability of Nuclear Burning</td>
<td>56</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Shell Source Instability</td>
<td>57</td>
</tr>
<tr>
<td>3.6</td>
<td>The Role of Radiation Pressure in Stars</td>
<td>58</td>
</tr>
<tr>
<td>3.6.1</td>
<td>The Radiative Pressure as a Function of Mass</td>
<td>60</td>
</tr>
<tr>
<td>3.6.2</td>
<td>The Eddington Luminosity</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>The Energy Conservation and Radiative Equilibrium in Rotating Stars</td>
<td>67</td>
</tr>
<tr>
<td>4.1</td>
<td>Radiative Equilibrium for Rotating Stars</td>
<td>67</td>
</tr>
<tr>
<td>4.1.1</td>
<td>The Equation of Radiative Transfer</td>
<td>67</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Conservation of Energy</td>
<td>68</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Structure Equations for Rotating Stars</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Radiative Transfer in Rotating Stars</td>
<td>70</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Breakdown of Radiative Equilibrium</td>
<td>70</td>
</tr>
<tr>
<td>4.2.2</td>
<td>The Von Zeipel Theorem</td>
<td>71</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Interferometric Observations of Stellar Distortion and Gravity Darkening</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Interactions of Rotation and Radiation Effects</td>
<td>75</td>
</tr>
<tr>
<td>4.3.1</td>
<td>The Γ, Ω and $\Omega \Gamma$ Limits</td>
<td>75</td>
</tr>
<tr>
<td>4.3.2</td>
<td>The $\Omega \Gamma$ Limit: Combined Eddington and Rotation Limits</td>
<td>76</td>
</tr>
<tr>
<td>4.4</td>
<td>Critical Rotation Velocities</td>
<td>78</td>
</tr>
<tr>
<td>4.4.1</td>
<td>No Break-up Velocity for Differential Rotation</td>
<td>78</td>
</tr>
</tbody>
</table>
4.4.2 Classical Expression of the Critical Velocity 79
4.4.3 The Different Rotation Parameters 80
4.4.4 Critical Velocity Near the Eddington Limit 81

5 Stellar Convection* ... 83
5.1 Gravity Waves and the Brunt–Väisälä Frequency 83
5.1.1 Relation with the Entropy Gradient 85
5.1.2 The Schwarzschild and Ledoux Criteria 86
5.1.3 The Four T Gradients 88
5.2 Mixing-Length Theory for the Convective Flux 90
5.2.1 Orders of Magnitude 92
5.3 Convection in Stellar Interiors 94
5.4 Non-adiabatic Convection 97
5.4.1 Radiative Losses .. 97
5.4.2 Thermal Adjustment Timescale 98
5.4.3 Solutions for Non-adiabatic Convection 99
5.4.4 Limiting Cases, Fraction Carried by Convection 100
5.5 Convection in the Most Luminous Stars 103
5.5.1 Convection Near the Eddington Limit 103
5.5.2 Density Inversion .. 104
5.5.3 Pressure and Flux of Turbulence 104

6 Overshoot, Semiconvection, Thermohaline Convection, Rotation
and Solberg–Hoiland Criterion 109
6.1 Convective Overshooting 109
6.1.1 Overshooting in an MLT Non-local Model 109
6.1.2 The Roxburgh Criterion for Convective Overshoot .. 112
6.1.3 Turbulence Modeling and Overshooting 114
6.1.4 Observational Constraints 116
6.2 Semiconvection and Thermohaline Convection 118
6.2.1 Various Approaches 119
6.2.2 Kato Equation, Thermohaline Convection 121
6.2.3 Diffusion Coefficient for Semiconvection 123
6.3 Time-Dependent Convection 124
6.4 Effects of Rotation on Convection 125
6.4.1 Oscillation Frequency in a Rotating Medium 125
6.4.2 The Rayleigh Criterion and Rayleigh–Taylor Instability . 127
6.4.3 The Solberg–Hoiland Criterion 128
6.4.4 Numerical Simulations 129
6.5 Convective Envelope in Rotating O-stars 130
Part II Physical Properties of Stellar Matter

7 The Equation of State∗ .. 137

7.1 Excitation and Ionization of Gases .. 137

7.1.1 Excitation .. 137

7.1.2 Ionization of Gases: The Saha Equation 139

7.1.3 The Saha–Boltzmann Equation .. 140

7.1.4 Ionization Potentials and Negative Ions 142

7.2 Perfect Gas and Mean Molecular Weights 143

7.3 Partially Ionized Stellar Medium 145

7.3.1 Coupled Equations for a Medium Partially Ionized 146

7.3.2 Thermodynamic Coefficients for Partial Ionization 148

7.4 Adiabatic Exponents and Thermodynamic Functions 149

7.4.1 Definitions of the Adiabatic Exponents 149

7.4.2 Relation Between the Γ and Specific Heats 151

7.5 Thermodynamics of Mixture of Gas and Radiation 153

7.6 Electrostatic Effects ... 156

7.6.1 The Debye–Hückel Radius 156

7.6.2 Electrostatic Effects on the Gas Pressure 158

7.6.3 Ionization by Pressure 159

7.6.4 Crystallization .. 160

7.7 Degenerate Gases .. 161

7.7.1 Partially Degenerate Gas 164

7.7.2 Non-Relativistic Partial Degeneracy 164

7.7.3 Completely Degenerate Gas 166

7.7.4 Electrostatic Effects in a Degenerate Medium 169

7.7.5 A Note on the Consequences of Degeneracy and on White Dwarfs ... 170

7.8 Global View on the Equation of State 172

8 The Opacities∗ .. 177

8.1 Line Absorption, Electron Scattering, Rayleigh Diffusion 177

8.1.1 Recalls on the Atomic Oscillators 177

8.1.2 Spectral Lines or Bound–Bound Transitions 178

8.2 Electron Scattering ... 179

8.2.1 Electron Scattering at High Energies 180

8.2.2 Rayleigh Diffusion 181

8.3 Photoionization or Bound–Free Transitions 181

8.3.1 Negative H Absorption 183

8.4 Hyperbolic Transitions or Free–Free Opacity 185

8.5 Electronic Conduction ... 186

8.5.1 Electron Conduction in Non-degenerate Gas 186

8.5.2 Electron Conduction in Degenerate Gas 188

8.6 Global View on Stellar Opacities 189

8.6.1 Dependence on T and ρ, Changes with Masses 189

8.6.2 Opacity Tables ... 191
9 Nuclear Reactions and Neutrino Processes

9.1 Physics of the Nuclear Reactions

9.1.1 Reaction Energy

9.2 Nuclear Reaction Rates

9.2.1 Particle Lifetimes and Energy Production Rates

9.3 Nuclear Cross-Sections

9.3.1 The Rate of Non-resonant Reactions

9.3.2 The Rate of Resonant Nuclear Reactions

9.4 Electron Screening

9.5 Neutrino Emission Processes

9.5.1 Photo-neutrinos

9.5.2 Pair Annihilation Neutrinos

9.5.3 Plasma, Bremsstrahlung, Recombination Neutrinos

Part III Hydrodynamical Instabilities and Transport Processes

10 Transport Processes: Diffusion and Advection

10.1 General Properties of Diffusion

10.1.1 Absence of Global Mass Flux

10.1.2 Continuity Equation: Atomic Diffusion and Motion

10.1.3 Fluxes of Particles, Velocities and Diffusion Coefficient

10.2 Diffusion by an Abundance Gradient

10.2.1 Equation of Diffusion

10.2.2 Boundary Conditions and Interpolations

10.2.3 Caution About the Use of Concentrations

10.3 Microscopic or Atomic Diffusion

10.3.1 Gravitational Settling

10.3.2 Equations of Motion of Charged Particles

10.3.3 The Electric Field and the Diffusion Velocities

10.3.4 Diffusion Equation

10.3.5 Effect of a Thermal Gradient

10.4 The Radiative Diffusion

10.4.1 Radiative Acceleration

10.4.2 Acceleration by Spectral Lines

10.4.3 Continuum Absorption, Redistribution, Magnetic Field

10.4.4 Orders of Magnitude, Diffusion in A Stars

10.4.5 Atomic Diffusion in the Sun

10.5 Transport of Angular Momentum in Stars

10.5.1 Equation of Transport

10.5.2 Transport of Angular Momentum by Shears

10.5.3 Some Properties of Shellular Rotation

10.5.4 Transport in Shellular Rotation

10.5.5 Boundary Conditions
11 Meridional Circulation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1.1</td>
<td>Thermal Imbalance</td>
<td>250</td>
</tr>
<tr>
<td>11.1.2</td>
<td>The Horizontal Thermal Balance</td>
<td>253</td>
</tr>
<tr>
<td>11.2.1</td>
<td>The Fluctuations of T, μ, ε and χ</td>
<td>255</td>
</tr>
<tr>
<td>11.2.2</td>
<td>The Baroclinic Equation</td>
<td>258</td>
</tr>
<tr>
<td>11.2.3</td>
<td>The Horizontal Fluctuations of Effective Gravity</td>
<td>259</td>
</tr>
<tr>
<td>11.3</td>
<td>The Velocity of Meridional Circulation</td>
<td>262</td>
</tr>
<tr>
<td>11.4</td>
<td>Properties of Meridional Circulation</td>
<td>267</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Simplified Expressions and Timescale</td>
<td>267</td>
</tr>
<tr>
<td>11.4.2</td>
<td>T and μ Excesses and Circulation Patterns</td>
<td>269</td>
</tr>
<tr>
<td>11.5</td>
<td>The Major Role of the Gratton–Opik Term</td>
<td>272</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Departure from Solid Body and Initial Ω Convergence</td>
<td>272</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Stationary Circulation in Equilibrium with Diffusion</td>
<td>273</td>
</tr>
<tr>
<td>11.5.3</td>
<td>The Gratton–Opik Circulation and Evolution</td>
<td>274</td>
</tr>
<tr>
<td>11.6</td>
<td>Meridional Circulation with Horizontal Turbulence</td>
<td>276</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Transport of the Elements</td>
<td>277</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Transport of the Angular Momentum</td>
<td>281</td>
</tr>
</tbody>
</table>

12 Rotation-Driven Instabilities

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Horizontal Turbulence</td>
<td>283</td>
</tr>
<tr>
<td>12.1.1</td>
<td>The Horizontal Fluctuations of Ω</td>
<td>284</td>
</tr>
<tr>
<td>12.1.2</td>
<td>A First Estimate of the Horizontal Turbulence</td>
<td>287</td>
</tr>
<tr>
<td>12.1.3</td>
<td>Turbulent Diffusion from Laboratory Experiment</td>
<td>288</td>
</tr>
<tr>
<td>12.1.4</td>
<td>What Sets the Timescale of Horizontal Turbulence?</td>
<td>290</td>
</tr>
<tr>
<td>12.1.5</td>
<td>Consequences</td>
<td>291</td>
</tr>
<tr>
<td>12.2</td>
<td>Shear Instabilities and Mixing</td>
<td>293</td>
</tr>
<tr>
<td>12.2.1</td>
<td>The Richardson Criterion</td>
<td>294</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Dynamical Shears</td>
<td>296</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Thermal Effects at Constant μ</td>
<td>296</td>
</tr>
<tr>
<td>12.2.4</td>
<td>The T Gradient in Shears</td>
<td>299</td>
</tr>
<tr>
<td>12.2.5</td>
<td>Thermal Effects and μ Gradient</td>
<td>300</td>
</tr>
<tr>
<td>12.3</td>
<td>Shear Mixing with Horizontal Turbulence</td>
<td>302</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Richardson Criterion with Horizontal Turbulence</td>
<td>302</td>
</tr>
<tr>
<td>12.3.2</td>
<td>The Coefficient of Shear Diffusion with Turbulence</td>
<td>303</td>
</tr>
<tr>
<td>12.4</td>
<td>Baroclinic Instabilities</td>
<td>305</td>
</tr>
<tr>
<td>12.4.1</td>
<td>The Goldreich–Schubert–Fricke or GSF Instability</td>
<td>306</td>
</tr>
<tr>
<td>12.4.2</td>
<td>The ABCD Instability</td>
<td>308</td>
</tr>
</tbody>
</table>

13 Magnetic Field Instabilities and Transport Processes

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>The Equations of Magnetohydrodynamics (MHD)</td>
<td>311</td>
</tr>
<tr>
<td>13.1.1</td>
<td>The MHD Equations in Astrophysics</td>
<td>311</td>
</tr>
<tr>
<td>13.1.2</td>
<td>Equations of Stellar Structure with Magnetic Field</td>
<td>313</td>
</tr>
<tr>
<td>13.1.3</td>
<td>Alfvén Waves</td>
<td>315</td>
</tr>
</tbody>
</table>
13.1.4 Dynamos and the Solar Dynamo 316
13.1.5 Observed Fields and Limits 317
13.2 Magnetic Braking of Rotating Stars 319
 13.2.1 Saturation Effects ... 321
 13.2.2 Mass Dependence ... 322
 13.2.3 Consequences .. 323
13.3 Magnetic Field Properties in Radiative Regions 325
 13.3.1 The Ferraro Law of Isorotation 326
 13.3.2 Field Amplification by Winding-Up 327
 13.3.3 Magnetic Field Evolution and Rotational Smoothing 328
13.4 The Tayler Instability and Possible Dynamo 330
 13.4.1 The Tayler Instability .. 330
 13.4.2 The Tayler–Spruit Dynamo and Questions 331
 13.4.3 Conditions for Instability 332
 13.4.4 Thermal Diffusivity .. 334
 13.4.5 Solutions of the Dynamo Equations 336
13.5 Transports of Angular Momentum by the Magnetic Field 339
 13.5.1 Viscous Coupling by the Field 339
 13.5.2 Horizontal Coupling of Rotation 340
 13.5.3 Check for Consistency .. 341
13.6 Models with Magnetic Field and Circulation 342
 13.6.1 Evolution of Ω, B and the Diffusion Coefficients 343
 13.6.2 Evolutionary Consequences 347
13.7 Other Magnetic Instabilities 348
 13.7.1 Magnetic Shear Instability and Transport 349
 13.7.2 Magnetic Buoyancy .. 351

14 Physics of Mass Loss by Stellar Winds 355
 14.1 Stellar Wind Properties .. 355
 14.2 Radiatively Line-Driven Winds 357
 14.2.1 Simplified Theory .. 357
 14.2.2 Metallicity, Velocities and Other Effects 361
 14.3 Kudritzki’s Wind Momentum–Luminosity Relation 362
 14.3.1 Rotation and the WLR Relation 363
 14.4 Rotation Effects on Stellar Winds 364
 14.4.1 Latitudinal Variations 364
 14.4.2 Mass Loss and Rotation 367

Part IV Acoustic and Gravity Waves. Helio- and Asteroseismology

15 Radial Pulsations of Stars ... 371
 15.1 Thermodynamics of the Pulsations 371
 15.2 Linear Analysis of Radial Oscillations 373
 15.2.1 Convection .. 378
 15.2.2 Boundary Conditions and Eigenvalue Problem 379
Contents

15.3 Baker’s One-Zone Analytical Model .. 381
 15.3.1 Adiabatic Pulsations ... 384

15.4 Non-adiabatic Effects in Pulsations 385
 15.4.1 The κ and γ Mechanisms 385
 15.4.2 The Damping Timescale of Pulsations 389
 15.4.3 Secular Instability: Conditions on Opacities and Nuclear
 Reactions ... 390

15.5 Relations to Observations: Cepheids 391
 15.5.1 The Period-Luminosity-Color Relations 391
 15.5.2 Physics of the Instability Strip 394
 15.5.3 The Period–Luminosity Relation 397
 15.5.4 Light Curves ... 398

16 Nonradial Stellar Oscillations ... 401
 16.1 Basic Equations of Nonradial Oscillations 401
 16.1.1 Starting Equations 401
 16.1.2 Perturbations of the Equations 402
 16.1.3 Separation in Vertical and Horizontal Components 404
 16.1.4 Decomposition in Spherical Harmonics 405

 16.2 Nonradial Adiabatic Oscillations 409
 16.2.1 Basic Equations .. 409
 16.2.2 Some Properties of the Equations 411
 16.2.3 Simplification to a Second-Order Equation 412
 16.2.4 Domains of the Acoustic and Gravity Modes 414
 16.2.5 The Degree ℓ and Radial Order n 416

 16.3 Properties of Acoustic or p Modes 419
 16.3.1 Inner Turning Points of p Modes 419
 16.3.2 Properties of the Solar Cavity: Parabolic Relations 421
 16.3.3 Behavior of p Modes at the Surface 423
 16.3.4 Excitation and Damping 427

 16.4 The Asymptotic Theory of p Modes 428
 16.4.1 The Frequencies of p Modes 428
 16.4.2 Second-Order Effects 431

 16.5 Helioseismology and Asteroseismology 433
 16.5.1 Helioseismic Observations 433
 16.5.2 Asteroseismic Observations 436
 16.5.3 The Asteroseismic Diagram 438
 16.5.4 Effects of X, Z and Mixing Length on the Large
 and Small Separations 441

 16.6 Rotational Effects: Splitting and Internal Mixing 441
 16.6.1 The Rotational Splitting: First Approach 442
 16.6.2 Further Steps ... 443
 16.6.3 The Tachocline and Inner Solar Rotation 444
 16.6.4 Structural Effects of Rotation 447
17 Transport by Gravity Waves ... 449
 17.1 The Propagation of Gravity Waves 449
 17.1.1 Properties of Gravity Waves 449
 17.1.2 Propagation Equation .. 451
 17.1.3 Non-adiabatic Effects .. 454
 17.2 Energy and Momentum Transport by Gravity Waves 458
 17.2.1 Wave Excitation ... 461
 17.3 Consequences of Transport by Gravity Waves 465
 17.3.1 Shear Layer Oscillations “SLO” 465
 17.3.2 The Solar Rotation Curve 467
 17.3.3 Waves and the Lithium Dip 469
 17.4 Transport by Gravity Waves and Open Questions 470
 17.4.1 Particles Diffusion by Gravity Waves 470
 17.4.2 Open Questions and Further Developments 471

Part V Star Formation

18 Pre-stellar Phase* ... 475
 18.1 Overview and Signatures of Star Formation 475
 18.2 The Beginning of Cloud Contraction 477
 18.2.1 The Jeans Criterion ... 477
 18.2.2 Various Expressions of the Jeans Criterion 480
 18.2.3 Initializing the Cloud Collapse 482
 18.2.4 The Timescale ... 482
 18.3 The Role of Magnetic Field and Turbulence 484
 18.3.1 Magnetic Fields .. 484
 18.3.2 The Major Role of Turbulence in Star Formation 486
 18.4 Isothermal Collapse and Cloud Fragmentation 487
 18.4.1 Dust Grains and Cooling 487
 18.4.2 The Initial Cloud Structure and its Evolution 488
 18.4.3 The Hierarchical Fragmentation 491
 18.4.4 The Opacity-Limited Fragmentation 492
 18.4.5 The Initial Stellar Mass Spectrum 494

19 The Protostellar Phase and Accretion Disks* 497
 19.1 Accretion Disks .. 497
 19.1.1 Observations of Disks 497
 19.1.2 Disk Formation .. 498
 19.1.3 Disk Properties and Evolution 500
 19.1.4 Stationary Disks .. 502
 19.2 Accretion in Low and Intermediate Mass Stars 504
 19.2.1 Theoretical Estimates of the Accretion Rates 505
 19.2.2 Structure of the Protostar in the Accretion Phase 506
 19.3 The Phase of Adiabatic Contraction 508
 19.3.1 Evolution of the Central Object 510
 19.4 Properties at the End of the Protostellar Phase 511
20 The Pre-main Sequence Phase and the Birthlines

20.1 General Properties of Non-adiabatic Contraction
20.1.1 The Kelvin–Helmholtz Timescale

20.2 Pre-MS Evolution at Constant Mass
20.2.1 The Hayashi Line
20.2.2 Gravitational Energy Production and D Burning
20.2.3 From the Hayashi Line to the ZAMS

20.3 Pre-MS Evolution with Mass Accretion
20.3.1 The Birthline and Its Timescales
20.3.2 The Luminosity from D Burning

20.4 Evolution on the Birthline

20.5 Evolution from the Birthline to the ZAMS

20.6 Lifetimes, Ages and Isochrones

20.7 Lithium Depletion in Pre-MS Stars
20.7.1 Model Predictions
20.7.2 Li and D in T Tauri Stars and Residual Accretion
20.7.3 Li Depletion in Low-Mass Stars and Brown Dwarfs
20.7.4 Li Dating from Brown Dwarfs and Low-\(M\) Stars

21 Rotation in Star Formation

21.1 Steps in the Loss of Angular Momentum
21.1.1 From Interstellar Clouds to T Tauri Stars
21.1.2 From T Tauri Stars to the ZAMS
21.1.3 End of Pre-MS Phase and Early Main Sequence

21.2 Disk Locking and Magnetospheric Accretion
21.2.1 Observational Evidences

21.3 Magnetic Braking and Rotation in Clusters
21.3.1 Predicted Magnetic Braking
21.3.2 Comparisons with Rotation Velocities in Clusters

22 The Formation of Massive Stars

22.1 The Various Scenarios for Massive Star Formation
22.1.1 The Classical or Constant Mass Scenario
22.1.2 The Collision or Coalescence Scenario
22.1.3 The Accretion Scenario

22.2 Timescales for Accreting Stars

22.3 Limits on the Accretion Rates
22.3.1 The Upper Limit on Accretion
22.3.2 Conditions on Dust Opacity
22.3.3 The Lower Limit on Accretion Rates
22.3.4 The Role of Rotation

22.4 Accretion Models for Massive Star Formation
22.4.1 Formation with Initially Peaked Accretion
22.4.2 The Churchwell–Henning Relation
23 The Formation of First Stars in the Universe: Pop. III and Pop. II.5

The Pre- and Protostellar Phases at $Z = 0$... 571
23.1 Molecular H$_2$ and Gas Cooling ... 571
23.1.2 Fragmentation of Metal-Free Clouds ... 572
23.1.3 Formation of an Adiabatic Core ... 574
23.1.4 Accretion on the Core .. 575
23.2 The Mass–Radius Relation of $Z = 0$ Stars 576
23.3 Evolution of the Largest Masses at $Z = 0$ 579
23.3.1 Critical Accretion for Massive Stars at $Z = 0$ 580
23.4 The HR Diagram of Accreting Stars at $Z = 0$ 581
23.4.1 The Case of Non-zero Metallicities ... 581
23.4.2 The Role of Rotation ... 582
23.5 The Upper Mass Limit at $Z = 0$... 582
23.5.1 Main Effects .. 583
23.5.2 HII Region in a Free-Falling Envelope .. 583
23.5.3 Radiation Effect on an HII Region ... 585
23.6 The Pop. II.5 Stars ... 587
23.6.1 HD Formation and Gas Cooling .. 587
23.6.2 The Masses of the Pop. II.5 Stars ... 588

Part VI Main-Sequence and Post-MS Evolution

24 Solutions of the Equations and Simple Models∗ 593
24.1 Hydrostatic and Hydrodynamic Models .. 593
24.1.1 Hydrostatic Models and Vogt–Russel Theorem 593
24.1.2 Hydrodynamic Equations .. 595
24.1.3 Boundary Conditions at the Center and Surface 596
24.1.4 Analytical Solutions in the Outer Layers 597
24.2 The Henyey Method ... 599
24.3 Homology Transformations: Relations M–L–R 601
24.3.1 Other Effects: Electron Scattering, P_{rad}, Convection 604
24.4 The Helium and Generalized Main Sequences 605
24.4.1 The Helium Sequence .. 605
24.4.2 Generalized Main Sequences .. 605
24.5 Polytropic Models ... 607
24.5.1 Interesting Polytropes ... 609
24.5.2 Isothermal Sphere ... 610

25 Evolution in the H-Burning Phases∗ .. 613
25.1 Hydrogen Burning ... 613
25.1.1 The pp Chains ... 614
25.1.2 Equations for Composition Changes ... 615
25.1.3 The CNO Cycles ... 618
25.1.4 Energy Production in MS Stars ... 620
25.1.5 The NeNa and MgAl Cycles ... 621
25.2 Basic Properties of MS Stars ... 624
 25.2.1 Differences in Structure .. 624
 25.2.2 Main Parameters as a Function of Mass 625
 25.2.3 Evolutionary Timescales .. 627
25.3 Solar Properties and Evolution ... 629
 25.3.1 Internal Structure .. 629
 25.3.2 The Evolution of the Sun .. 632
 25.3.3 Solar Neutrinos .. 634
25.4 Evolution on the Main Sequence ... 637
 25.4.1 Internal Properties, Tracks in the HR Diagram 637
25.5 The End of the Main Sequence ... 640
 25.5.1 The Schönberg–Chandrasekhar Limit 640
 25.5.2 Isochrones and Age Determinations 642

26 Evolution in the He Burning and AGB Phases of Low and
 Intermediate Mass Stars with Rotation* 645
26.1 Helium Burning .. 645
26.2 He Burning in Intermediate Mass Stars 647
 26.2.1 From Main Sequence to Red Giants 647
 26.2.2 Evolution in the He-Burning Phase and Dredge-up 651
 26.2.3 From AGB to the White Dwarfs 654
 26.2.4 The Blue Loops .. 656
26.3 Some Metallicity Effects in Evolution 657
26.4 Central Evolution and Domains of Stellar Masses 658
 26.4.1 The Mass Limits for Evolution 661
 26.4.2 Evolution of the Entropy per Baryon 664
26.5 The Horizontal Branch ... 665
26.6 Evolution and Nucleosynthesis in AGB Stars 667
 26.6.1 Structure and Instability of TP-AGB Stars 667
 26.6.2 Third Dredge-Up and TP-AGB Nucleosynthesis 671
 26.6.3 AGB Classification and Chemical Abundances 674
 26.6.4 Post-AGB Stars to Planetary Nebulae and White Dwarfs,
 Super-AGB Stars ... 676
26.7 Rotation and Mixing Effects in AGB stars 678
26.8 Nucleosynthesis in AGB Stars ... 681
 26.8.1 Nucleosynthesis in E-AGB stars 681
 26.8.2 Nucleosynthesis in TP-AGB Stars 683

27 Massive Star Evolution with Mass Loss and Rotation* 685
27.1 The Need for Both .. 685
27.2 Evolution at Constant Mass .. 686
27.3 Internal Evolution and the HR Diagram 688
 27.3.1 Mass Loss Parametrizations 688
 27.3.2 Mass Loss Effects in the HR Diagram 690
 27.3.3 Internal Evolution with Mass Loss 692
27 Advanced Evolutionary Stages and Pre-supernovae

27.3.4 Effects of Rotation in the MS Phase .. 693
27.3.5 Lifetimes and Age Estimates ... 694
27.3.6 He-Burning: Blue and Red Supergiants at Different Z 696
27.4 Evolution of the Chemical Abundances 697
27.4.1 Steps in the Peeling-Off by Mass Loss 697
27.4.2 Observed N/H Excesses ... 699
27.4.3 Chemistry in Models with Rotation 700
27.4.4 Abundances and Massive Star Filiations 702
27.5 Wolf–Rayet Stars: the Daughters of O stars 703
27.5.1 WR Properties: the Zebras in the Zoo 703
27.5.2 Optically Thick Winds. M–L–R–T eff Relations 703
27.6 WR Star Chemistry .. 706
27.6.1 Observations .. 706
27.6.2 Mass Loss, Rotation and WR Chemistry 707
27.6.3 22Ne in WC Stars .. 709
27.7 Number Ratios of WR Stars in Galaxies 710
27.7.1 Observed Number Ratios ... 710
27.7.2 Models with Mass Loss and Rotation 711
27.8 Evolution of the Rotational Velocities 713
27.8.1 Rotation of LBV ... 715
27.8.2 WR Star Rotation ... 716

28 Advanced Evolutionary Stages and Pre-supernovae

28.1 Nuclear Reactions in the Advanced Phases 719
28.1.1 C Burning .. 719
28.1.2 Ne Photodisintegration .. 723
28.1.3 O Burning .. 723
28.1.4 Silicon Burning ... 724
28.2 The Advanced Phases with and Without Rotation 725
28.2.1 Toward the “Onion Skin” Model 726
28.2.2 Decoupling of Core and Envelope 727
28.2.3 Evolution of Central Conditions 727
28.2.4 Lifetimes and Core Masses, Rotation 729
28.3 Chemical Yields: Z, Mass Loss and Rotation Effects 731
28.3.1 Chemical Yields of α-Rich Nuclei 732
28.4 Toward the Supernovae ... 734
28.4.1 Supernova Types ... 734
28.4.2 Core Collapse and Explosion 736
28.4.3 Final Masses and Remnants 738
28.5 Explosive Synthesis .. 741
28.5.1 Elements with A < 56 .. 741
28.5.2 The Fe Peak ... 743
28.5.3 The Heavy Elements A ≥ 60 745
28.5.4 The s-Elements .. 746
28.5.5 The r-Elements .. 747
28.6 Evolution of Rotation: Pulsars and GRBs
28.6.1 Distribution of the Specific Angular Momentum
28.6.2 The Rotation of Pulsars
28.6.3 GRBs: A Challenging Problem
28.6.4 Models for the GRB Progenitors

29 Evolution of $Z = 0$ and Very Low Z Stars
29.1 Basic Properties and Evolution of $Z = 0$ Stars
29.1.1 Differences in the Physics
29.1.2 The HR and logT_c vs. logρ_c Diagrams
29.1.3 Low-Mass Stars ($M < 3 M_\odot$)
29.1.4 Intermediate Mass Stars ($3 M_\odot < M < 10 M_\odot$)
29.1.5 High-Mass Stars ($M > 10 M_\odot$)
29.1.6 Other Properties: Mass Limits and CO Cores
29.2 Rotation Effects at $Z = 0$
29.2.1 HR Diagram and Lifetimes
29.2.2 Evolution of the Rotation, Final Masses
29.3 Rotation Effects in Very Low Z Models
29.3.1 Rotational Mass Loss in the First Generations
29.3.2 Enrichments by the Winds of the First Generations

A Physical and Astronomical Constants
A.1 Physical Constants
A.2 Some Astronomical Constants
A.3 Initial Solar Abundances

B Complements on Mechanics and Electromagnetism
B.1 Equations of Motion and Continuity
B.1.1 Equations of Continuity and of Motion
B.1.2 Remarks on Derivatives
B.1.3 Vectorial Operators in Spherical Coordinates
B.1.4 Viscous Terms
B.1.5 Navier–Stokes Equation
B.1.6 Equation of Motion with Rotation
B.1.7 Geostrophic Motions, Taylor–Proudman Theorem
B.2 Maxwell Equations
B.3 Statistical Mechanics: Pressure and Energy Density
B.3.1 Non-relativistic Particles
B.3.2 Relativistic Particles
B.4 Expressions of Viscosity, Conductivity and Diffusion
B.4.1 Viscosity from Turbulence, Radiation and Plasma
B.4.2 Conductivity
B.4.3 Diffusion Coefficient
B.5 Dimensionless Numbers
B.5.1 Reynolds Number
B.5.2 Prandtl Number
Physics, Formation and Evolution of Rotating Stars
Maeder, A.
2009, XXI, 832 p. 325 illus., 6 illus. in color., Hardcover
ISBN: 978-3-540-76948-4