Contents

1 Historical Background ... 1
2 The Lebesgue Measure, Convolution 9
3 Smoothing by Convolution ... 15
4 Truncation; Radon Measures; Distributions 17
5 Sobolev Spaces; Multiplication by Smooth Functions 21
6 Density of Tensor Products; Consequences 27
7 Extending the Notion of Support 33
8 Sobolev’s Embedding Theorem, $1 \leq p < N$ 37
9 Sobolev’s Embedding Theorem, $N \leq p \leq \infty$ 43
10 Poincaré’s Inequality .. 49
11 The Equivalence Lemma; Compact Embeddings 53
12 Regularity of the Boundary; Consequences 59
13 Traces on the Boundary .. 65
14 Green’s Formula .. 69
15 The Fourier Transform ... 73
16 Traces of $H^s(R^N)$... 81
17 Proving that a Point is too Small 85
XXIV Contents

18 Compact Embeddings .. 89
19 Lax–Milgram Lemma .. 93
20 The Space $H(div; \Omega)$.. 99
21 Background on Interpolation; the Complex Method 103
22 Real Interpolation; K-Method 109
23 Interpolation of L^2 Spaces with Weights 115
24 Real Interpolation; J-Method 119
25 Interpolation Inequalities, the Spaces $(E_0, E_1)_{\theta,1}$ 123
26 The Lions–Peetre Reiteration Theorem 127
27 Maximal Functions ... 131
28 Bilinear and Nonlinear Interpolation 137
29 Obtaining L^p by Interpolation, with the Exact Norm 141
30 My Approach to Sobolev’s Embedding Theorem 145
31 My Generalization of Sobolev’s Embedding Theorem 149
32 Sobolev’s Embedding Theorem for Besov Spaces 155
33 The Lions–Magenes Space $H^{1/2}_{00}(\Omega)$ 159
34 Defining Sobolev Spaces and Besov Spaces for Ω 163
35 Characterization of $W^{s,p}(R^N)$ 165
36 Characterization of $W^{s,p}(\Omega)$ 169
37 Variants with BV Spaces 173
38 Replacing BV by Interpolation Spaces 177
39 Shocks for Quasi-Linear Hyperbolic Systems 183
40 Interpolation Spaces as Trace Spaces 191
41 Duality and Compactness for Interpolation Spaces 195
42 Miscellaneous Questions 199
<table>
<thead>
<tr>
<th>Contents</th>
<th>XXV</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>Biographical Information</td>
</tr>
<tr>
<td>44</td>
<td>Abbreviations and Mathematical Notation</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td></td>
<td>Index</td>
</tr>
</tbody>
</table>
An Introduction to Sobolev Spaces and Interpolation Spaces
Tartar, L.
2007, XXV, 219 p., Softcover
ISBN: 978-3-540-71482-8