Part I: Basics on Synchronization and Paradigmatic Models

1 Introduction ... 3
 1.1 Synchronization Phenomena in Nature, Physics, and Engineering .. 3
 1.2 Goal of the Book .. 5
 1.3 Terminological Remarks 7
 1.4 Bibliographical Remarks 8

2 Basic Models ... 11
 2.1 Harmonic Oscillator: Amplitude, Frequency and Phase of Oscillations 11
 2.2 Van der Pol Oscillator: Quasi-Harmonic and Relaxation Limit Cycles 12
 2.3 Rössler Oscillator: From Phase-Coherent to Funnel Chaotic Attractors 14
 2.4 Lorenz Oscillator: “Classic” and Intermittent Chaotic Attractors .. 18
 2.5 Phase Oscillators .. 21
 2.5.1 First-Order Phase Oscillator (Active Rotator) 21
 2.5.2 Second-Order Phase Oscillator (Pendulum-Like System) .. 22
 2.5.3 Third-Order Phase Oscillator (Chaotic Rotator) 24
 2.5.4 Discrete-Time Rotator (Circle Map) 24
 2.6 Discrete Map for Spiking–Bursting Neural Activity ... 28
 2.7 Excitable Systems .. 29
 2.7.1 Hodgkin–Huxley Model 29
 2.7.2 FitzHugh–Nagumo Model 30
 2.7.3 Luo–Rudy Model ... 33
3 Synchronization Due to External Periodic Forcing 35

3.1 Synchronization of Limit-Cycle Oscillator
 by External Force ... 36
 3.1.1 Weak Forcing: Phase Description 36
 3.1.2 Synchronization of a van der Pol Oscillator
 by External Force ... 37

3.2 Phase Synchronization of a Chaotic Rössler Oscillator
 by External Driving 39

3.3 Imperfect Phase Synchronization 42

3.4 Transition to the Regime of Chaotic Phase Synchronization:
 The Role of Unstable Periodic Orbits 45

3.5 External Phase Synchronization
 of Chaotic Intermittent Oscillators 47
 3.5.1 Forced Model Quadratic Map 47
 3.5.2 Forced Lorenz Oscillator 51

3.6 External Phase Synchronization
 to a Periodic External Force 52

3.7 Conclusions ... 53

4 Synchronization of Two Coupled Systems 55

4.1 Synchronization of Regular Systems 55
 4.1.1 Phase Dynamics Approach 56
 4.1.2 Synchronization of Two Coupled van der Pol
 Oscillators ... 58
 4.1.3 Synchronization of Coupled Active Rotators 66

4.2 Synchronization of Coupled Chaotic Oscillators 68
 4.2.1 Phase Synchronization of Rössler Oscillators 68
 4.2.2 Synchronization of Coupled Intermittent Oscillators . 77
 4.2.3 Oscillatory and Rotatory Synchronization
 of Chaotic Phase Systems 79

4.3 Synchronization of Coupled Circle Maps 90
 4.3.1 Regular Synchronization 91
 4.3.2 Chaotic Synchronization 93

Part II: Synchronization in Geometrically Regular Ensembles

5 Ensembles of Phase Oscillators 103
 5.1 General Model and Malkin's Theorem 104
 5.2 Unidirectional Coupling 106

 5.3 Synchronization Phenomena in a Chain
 of Bidirectionally Coupled Phase Oscillators 112
 5.3.1 Synchronization, Clustering and Multistability
 in Chains with Linearly Distributed
 Individual Frequencies 114
5.3.2	Synchronization Transitions in Chains with Randomly Distributed Individual Frequencies	119
5.4	Influence of Non-Uniform Rotations on the Synchronization	121
5.5	Mutual Entrainment in Populations of Globally Coupled Phase Oscillators	123
5.6	Synchronization Phenomena in a Chain of Coupled Pendulum-Like Equations	125
5.7	Conclusions	127

6 Chains of Coupled Limit-Cycle Oscillators | 129 |
6.1	Objectives	130
6.2	Synchronization Clusters and Multistability at Linear Variation of Individual Frequencies Along the Chain	130
6.2.1	Model Equations	131
6.2.2	Global Synchronization in an Assembly, Stationary Phase Distributions, Synchronization area	133
6.2.3	Regimes of Cluster Synchronization	135
6.2.4	Multistability	141
6.3	Oscillation Death	143
6.4	Effects of Nonuniformity of the Frequency Mismatch Gradient in the Formation of Synchronized Clusters	145
6.4.1	Sensitivity of the Structures to Regular Nonuniformities	145
6.4.2	The Effect of Random Dispersion of Individual Frequencies on Cluster Synchronization	146
6.5	Synchronization in a Chain of van der Pol Oscillators	147
6.6	Conclusions	150

7 Ensembles of Chaotic Oscillators with a Periodic-Doubling Route to Chaos, Rössler Oscillators | 151 |
7.1	Synchronization Effects in a Homogeneous Chain of Rössler Oscillators	151
7.2	Basic Model of a Nonhomogeneous Chain, Phase and Frequency Definitions, and Criteria of Phase Synchronization	152
7.3	Phase Synchronization in a Chain with a Linear Distribution of Natural Frequencies, Phase-Coherent Rössler Oscillators	154
7.3.1	Theoretical Study	154
7.3.2	Numerical Results	155
7.4	Synchronization in a Chain with Randomly Distributed Natural Frequencies	160
7.5	Phase Synchronization of Rössler Oscillators with the Funnel Attractor	162
7.6 Anomalous Collective Behavior of Coupled Chaotic Oscillators .. 165
7.7 Conclusions .. 167

8 Intermittent-Like Oscillations in Chains of Coupled Maps ... 169
8.1 Model of Coupled Intermittent Maps, Phase and Frequency, Synchronization Criteria 170
8.2 Linearly Distributed Control Parameters, Soft Transition to Global Synchronization Regime 171
8.3 Randomly Distributed Control Parameter, Transition to Spatiotemporal Intermittency 173
8.4 Collective Oscillations in a Chain of Spiking Maps . 177
8.5 Synchronization in Ensembles of Globally Coupled Bursting Oscillators 178
8.5.1 Mutual Synchronization 180
8.5.2 External Synchronization 182
8.6 Conclusions .. 185

9 Regular and Chaotic Phase Synchronization of Coupled Circle Maps ... 187
9.1 Common Model for a Chain of Coupled Circle Maps . 188
9.2 Synchronization in a Chain of Identical Circle Maps . 189
9.2.1 Symmetrically Coupled Maps 190
9.2.2 Effect of Asymmetry of Coupling 195
9.2.3 Synchronization in Lattices of Coupled Maps . 197
9.3 Ensembles of Coupled Nonidentical Circle Maps and Criteria of Synchronization 199
9.4 Synchronization and Clustering in a Chain of Regular CMs . 200
9.4.1 Linear Distribution of Individual Frequencies 200
9.4.2 Random Distribution of Individual Frequencies 206
9.5 Chaotic Phase Synchronization 207
9.6 Conclusions .. 208

10 Controlling Phase Synchronization in Oscillatory Networks .. 213
10.1 General Principles of Automatic Synchronization 214
10.2 Two Coupled Poincaré Systems 216
10.3 Coupled van der Pol and Rössler Oscillators 217
10.4 Two Coupled Rössler Oscillators 220
10.5 Coupled Rössler and Lorenz Oscillators 223
10.6 Principles of Automatic Synchronization in Networks of Coupled Oscillators 224
10.7 Synchronization of Locally Coupled Regular Oscillators ... 225
10.8 Synchronization of Locally Coupled Chaotic Oscillators ... 228
11 Chains of Limit-Cycle Oscillators ... 233
11.1 Introduction and Model ... 233
11.2 Mechanism of Localized Structure Formation 235
11.3 Dissipative Coupling (Zero “Dispersion”) 235
11.3.1 Desynchronization of Front Propagation 235
11.3.2 Localized Synchronization Structures 237
11.3.3 Nonlocal Synchronization in Nonhomogeneous Chains 238
11.3.4 Fully Incoherent (Turbulent-Like) Oscillations 239
11.4 Nonscalar (Dissipative and Conservative) Coupling 241
11.4.1 Bursting Structures ... 241
11.4.2 Nonpropagation to Propagation Transition via Intermittency 242
11.4.3 Noise Influence .. 247
11.5 Conclusions ... 248

12 Chains and Lattices of Excitable Luo–Rudy Systems 251
12.1 Objectives ... 252
12.2 Cardiac Model .. 253
12.3 Methods: Theoretical Basis .. 254
12.4 Computational Results .. 255
12.4.1 One-Dimensional Simulations ... 255
12.4.2 Two-Dimensional Simulations ... 261
12.5 Conclusions ... 265

Part III: Synchronization in Complex Networks and Influence of Noise

13 Noise-Induced Synchronization in Ensembles of Oscillatory and Excitable Systems ... 269
13.1 Degrading Effects of Noise: Noise-Induced Phase Slips 270
13.2 Noise-Induced CS and PS in Uncoupled Chaotic Oscillators 273
13.2.1 Noise-Induced CS of Identical Chaotic Oscillators 273
13.2.2 Noise-Induced PS of Nonidentical Uncoupled Chaotic Systems 285
13.3 Noise-Enhanced PS in Weakly Coupled Chaotic Oscillators 288
13.3.1 Noise-Enhanced PS of a Chaotic Laser Due to Periodic Forcing 289
13.3.2 Noise-Enhanced PS of Two Coupled Rössler Oscillators 292
Synchronization in Oscillatory Networks
Osipov, G.V.; Kurths, J.; Zhou, C.
2007, XIV, 370 p. 221 illus., Hardcover
ISBN: 978-3-540-71268-8