Contents

1 Synthesis of Aluminosilicate Zeolites and Related Silica-Based Materials .. 1

Jean-Louis Guth and Henri Kessler

1.1 Scope .. 1
1.2 Introduction 1
1.2.1 Structure, Composition, Nomenclature 1
1.2.2 History of Zeolite Synthesis 4
1.3 Theoretical Part 5
1.3.1 Crystallogenesis 5
1.3.1.1 Nucleation 5
1.3.1.2 Crystal Growth 9
1.3.1.3 Advancement of the Crystallization with Time 13
1.3.1.4 Ostwald's Rule 14
1.3.2 Zeolite Synthesis, Mechanism and Chemistry 16
1.3.2.1 Presentation of the Synthesis System 16
1.3.2.2 Framework T Elements 18
1.3.2.3 Mineralizer and T Element Species in the Solution 20
1.3.2.4 Templates 22
1.4 Experimental Part 23
1.4.1 Experimental Factors 23
1.4.1.1 Nature of the Reactants 24
1.4.1.2 Composition of the Reaction Mixture 24
1.4.1.3 Preparation Procedure of the Reaction Mixture ... 25
1.4.1.4 Aging ... 26
1.4.1.5 Seeding .. 26
1.4.1.6 Nature of the Reactor 26
1.4.1.7 Crystallization Temperature 27
1.4.1.8 Pressure .. 27
1.4.1.9 Agitation ... 27
1.4.1.10 Heating Time 27
1.4.2 Review of Zeolites Obtained from Various Reaction Systems 28
1.4.2.1 All-Silica Molecular Sieves (T = Si) 28
1.4.2.2 (Si, Al) Systems with Inorganic Cations 28
1.4.2.3 (Si, Al) Systems with Inorganic and Organic Templates 29
3 Modification of Zeolites .. 81
Günter H. Kühl

3.1 Ion Exchange of Zeolites .. 81
3.1.1 Introduction and Theory 81
3.1.2 Aqueous Ion Exchange 81
3.1.2.1 Ion-Exchange Isotherms 84
3.1.2.2 Experimental .. 86
3.1.2.3 Thermochemistry of Ion Exchange 88
3.1.3 Ion Exchange of Zeolites X and Y 88
3.1.3.1 Univalent Ion Exchange 90
3.1.3.2 Divalent Ion Exchange 93
3.1.3.3 Trivalent Ion Exchange 98
3.1.4 Ion Exchange of ZSM-5 100
3.1.4.1 Univalent Ion Exchange 100
3.1.4.2 Divalent Ion Exchange 102
3.1.4.3 Trivalent Ion Exchange 103
3.1.4.4 Aluminum-Independent Ion Exchange 103
3.2 Metals Supported on Zeolites 104
3.2.1 Reduction of Metal Ions in Zeolites 105
3.2.1.1 Group IB .. 105
3.2.1.2 Group VIIIA, Fourth Period 113
3.2.1.3 Group VIIIA, Fifth Period 116
3.2.1.4 Group VIIIA, Sixth Period 123
3.3 Dealumination of Zeolites 127
3.3.1 Thermal Treatment .. 127
3.3.1.1 Hydrogen Zeolites 128
3.3.1.2 Dehydroxylation ... 132
3.3.2 Extraction of Framework Aluminum with Acid 133
3.3.2.1 The Aluminum-Deficient Form 134
3.3.2.2 Annealing of Tetrahedral Vacancies; High-Silica Faujasite 135
3.3.3 Hydrothermal Treatment 136
3.3.3.1 The Stabilized Form 136
3.3.3.2 The Ultrastable Form 140
3.3.3.3 Dealumination of High-Silica Zeolites 142
3.3.4 Direct Replacement of Aluminum with Silicon 145
3.3.4.1 Reaction with Silicon Halides 145
3.3.4.2 Reaction with Hexafluorosilicates 151
3.3.5 Removal of Other Framework Elements 154
3.4 Insertion into the Zeolite Framework 155
3.4.1 Reinsertion of Hydrolyzed Aluminum 155
3.4.2 Reaction with Aluminum Compounds 157
3.4.2.1 Aqueous Aluminate 157
3.4.2.2 Aluminum Oxide .. 158
3.4.2.3 Aluminum Halides .. 161
3.4.2.4 Complex Aluminum Fluoride 163
4 Characterization of Zeolites – Infrared and Nuclear Magnetic Resonance Spectroscopy and X-Ray Diffraction

Hellmut G. Karge, Michael Hunger, and Hermann K. Beyer

List of Abbreviations .. 198
Introdution ... 199
4.1 IR Spectroscopy ... 201
4.1.1 Introduction ... 201
4.1.2 Theoretical Background 201
4.1.3 Experimental Techniques 204
4.1.3.1 Transmission IR Spectroscopy 204
4.1.3.2 Diffuse Reflectance IR (Fourier Transform) Spectroscopy (DRIFT) 206
4.1.3.3 Photoacoustic IR Spectroscopy (PAS) 207
4.1.3.4 Cells for Studying Zeolites and Zeolite Adsorbate Systems by IR Spectroscopy 208
4.1.4 Study of Framework Vibrations of Zeolites 211
4.1.5 IR Investigation of Acidic and Basic Sites in Zeolites 215
4.1.5.1 Bronsted Acid Sites (Acidic Hydroxyls) 216
4.1.5.2 Lewis Acid Sites – True Lewis Sites 230
4.1.5.3 Lewis Acid Sites – Cations 231
4.1.6 Basic Sites (Basic Hydroxyls, Basic Oxygens) 233
4.1.7 Zeolite-Adsorbate Systems 235
4.1.8 Motion, Diffusion and Reaction of Guest Molecules in Zeolites . 238
4.2 NMR Spectroscopy .. 239
4.2.1 Introduction ... 239
4.2.2 Theoretical Background 240
4.2.2.1 Zeeman Interaction and Relaxation Effects 240
4.2.2.2 Solid-State Interactions 242
4.2.3 Experimental Techniques 245
4.2.3.1 Methods of High-Resolution Solid-State NMR 245
4.2.3.2 Cross-Polarization and Other Selected Pulse Techniques 248
4.2.3.3 Two-Dimensional NMR Spectroscopy 249
4.2.4 Applications 250
4.2.4.1 29Si MAS NMR Spectroscopy of SiO$_4$ Tetrahedra in the Zeolite Framework 250
4.2.4.2 27Al NMR Spectroscopy of Framework and Non-Framework Aluminum in Zeolites 256
4.2.4.3 31P MAS NMR Spectroscopy of PO$_4$ Tetrahedra in Aluminophosphate-, Silicoaluminophosphate-, and Gallophosphate-Type Zeolites 262
4.2.4.4 11B MAS NMR Spectroscopy of Boron-Modified Zeolites 266
4.2.4.5 Solid-State 17O NMR Spectroscopy of the Zeolite Framework 266
4.2.4.6 1H MAS NMR Spectroscopy of Acidic and Non-Acidic Hydroxyl Groups in Zeolites 267
4.2.4.7 Solid-State 23Na NMR Spectroscopy of Sodium Cations in Hydrated and Dehydrated Zeolites 275
4.2.4.8 133Cs MAS NMR Spectroscopy of Cesium Cations in Hydrated and Dehydrated Mordenites and Faujasites 282
4.2.4.9 129Xe NMR Investigations of the Zeolitic Pore Architecture 285
4.2.4.10 Investigations of Brønsted and Lewis Acid Sites by Probe Molecules 291
4.3 Application of Powder X-Ray Diffractometry in Zeolite Research 295
4.3.1 Introduction 295
4.3.2 Parameters Affecting the Intensity of Bragg Reflections 296
4.3.3 Calculation of Structure Factors 299
4.3.4 Powder-Data Structure Refinement 302
4.3.4.1 Profile-Fitting Method 303
4.3.4.2 Rietveld Method 304
4.3.4.3 Application of the Rietveld Method in Zeolite Structure Analysis 306
4.3.5 Crystallinity Determination 308
4.3.6 Determination of Framework Aluminum from X-Ray Data 310
4.3.7 Determination of the Crystallite Size 314
References 316

5 Shape-Selective Catalysis in Zeolites 327
Jens Weitkamp, Stefan Ernst, and Lothar Puppe
5.1 Scope 327
5.2 Introduction 328
5.2.1 Molecular Dimensions 328
5.2.2 Porous Solids: Crystallographic and Effective Pore Diameter 329
5.2.3 Molecular Sieving 331
5.3 Catalysis and Selectivity .. 333
5.3.1 Incentives for Applying a Catalyst 333
5.3.2 Intrinsic, Grain and Reactor Selectivity 334
5.3.3 Shape-Selective Catalysis ... 335
5.4 Internal vs. External Surface of Zeolites 336
5.4.1 Effect of the Crystallite Size 336
5.4.2 Experimental Techniques .. 337
5.5 Examples for Shape-Selective Reactions and Models for Rationalizing the Observed Effects 340
5.5.1 Early Observations .. 340
5.5.2 The Classical Concept After Weisz and Csicsery 341
5.5.2.1 Mass Transfer Effects: Reactant and Product Shape Selectivity ... 341
5.5.2.2 Intrinsic Chemical Effects: Restricted Transition State Shape Selectivity ... 343
5.5.2.3 Discrimination Between Mass Transfer and Intrinsic Chemical Effects .. 344
5.5.3 Other Concepts .. 345
5.5.3.1 The Cage or Window Effect 345
5.5.3.2 Molecular Traffic Control 346
5.5.3.3 Shape Selectivity at the External Surface: The Nest Effect ... 347
5.5.3.4 Tip-on Adsorption of Molecules Diffusing Inside the Pore System .. 349
5.5.3.5 Secondary Shape Selectivity/Inverse Shape Selectivity ... 350
5.6 Tailoring the Shape-Selective Properties of Zeolite Catalysts 351
5.6.1 Variation of the Zeolite Type and Isomorphous Substitution .. 351
5.6.2 Variation of the Crystallite Size and Compositional Zoning 353
5.6.3 Ion Exchange and Pore Size Engineering 354
5.6.4 Selective Poisoning of the External Surface 355
5.7 Catalytic Test Reactions for Probing the Effective Pore Width of Microporous Materials ... 356
5.7.1 Test Reactions for Acidic Molecular Sieves 357
5.7.1.1 Competitive Cracking of n-Hexane and 3-Methylpentane (the Constraint Index, CI) 357
5.7.1.2 Isomerization and Disproportionation of meta-Xylene ... 359
5.7.1.3 Reactions of Other Alkyl Aromatics 360
5.7.2 Test Reactions for Bifunctional Molecular Sieve Catalysts 361
5.7.2.1 Isomerization and Hydrocracking of Long-Chain n-Alkanes (the Refined or Modified Constraint Index, CI *) 362
5.7.2.2 Hydrocracking of Butylcyclohexane (the Spaciousness Index, SI) ... 364
5.8 More Recent Directions and Challenges in Shape-Selective Catalysis ... 365
5.8.1 Trend Towards Bulkier Molecules 365
5.8.2 Shape-Selective Catalysis on Transition Metals in Zeolites .. 367
5.8.3 Stereoselective Catalysis in Zeolites 367
5.8.4 Host/Guest Chemistry in Zeolites 368

References ... 370
6 Zeolite Effects in Organic Catalysis

Patrick Espeel, Rudy Parton, Helge Toufar, Johan Martens, Wolfgang Hölderich, and Pierre Jacobs

6.1 Reported Catalytic Technology with Zeolites

6.2 Generalities on Catalytic Organic Chemistry with Zeolites

6.3 Established Generalities on Shape Selectivity with Zeolites

6.4 Generation of Active Sites in Zeolites

6.5 The Latest Visions on Zeolite Acidity

6.6 Zeolite Superacidity

6.7 Zeolite Specificity in Organic Catalysis with Functional Molecules: Zeolite Effects

6.7.1 Zeolite Effect I: Shape Selectivity

6.7.1.1 General Procedures

6.7.1.2 Manifestation of Shape Selectivity in Organic Reactions

6.7.2 Zeolite Effect II: Specific Adsorption

6.7.2.1 Diels-Alder Cycloadditions

6.7.2.2 Friedel-Crafts Alkylation

6.7.2.3 Beckmann Rearrangement

6.7.3 Zeolite Effect III: Functional Selectivity

6.7.3.1 Hydrogenation of Unsaturated Aldehydes

6.7.3.2 Preparation of Allyl-Substituted Aromatics by Friedel-Crafts Methods

6.7.4 Zeolite Effect IV: Multifunctional Synergy

6.7.4.1 Hydrogenation + Alkylation

6.7.4.2 Hydrolysis + Hydrogenation

6.7.4.3 Hydration + Dehydrogenation

6.7.4.4 Isomerization + Dehydrogenation

6.7.4.5 Complete Process Changes by Zeolite Catalysts: \(\varepsilon \)-Caprolactam Production

6.7.5 Zeolite Effect V: New Chemistry with Zeolites

6.7.5.1 Pseudo-Solid-Solvent Effect

6.7.5.2 New Complexes Through Encapsulation

6.7.5.3 Ti-Zeolites

6.8 Case Study: Zeolites as Non-Corrosive, Environmentally Friendly Friedel-Crafts Alkylation Catalysts

6.8.1 Introduction

6.8.2 Friedel-Crafts Chemistry over Zeolites from a Historical Perspective

6.8.3 Overview of Friedel-Crafts Literature with Zeolites

6.8.3.1 Group 1 Reactions: Alkylation of Alkyl Aromatics with Olefins

6.8.3.2 Group 2 Reactions: Alkylation of Alkyl Aromatics with Alcohols, Ethers, Aldehydes, Amines etc.

6.8.3.3 Group 3 Reactions: Alkylation of Heteroatom-Substituted Aromatics with Olefins
6.8.3.4 Group 4 Reactions: Alkylation of Heteroatom-Substituted Aromatics with Alcohols, Aldehydes, Haloalkanes etc.

- 424

6.8.4 Recent Developments in Friedel-Crafts Alkylation: Solvent Effects

- 427

References

- 429

7 Zeolites as Catalysts in Industrial Processes

7.1 Introduction and General Overview

- 438

7.1.1 Oil Refining: Basics

- 438

7.1.2 The Petrochemical Industry

- 443

7.2 Fluid Catalytic Cracking

- 444

7.2.1 Feedstocks and Products

- 446

7.2.2 Application of Fluid Catalytic Cracking (FCC)

- 451

7.2.3 Reaction Mechanism

- 453

7.2.4 The FCC Catalyst

- 455

7.2.4.1 Catalyst Constituents

- 455

7.2.4.2 Effect of Metals on FCC Catalyst Behavior

- 459

7.2.4.3 Novel Zeolites in FCC Catalysts

- 459

7.2.4.4 Physical Catalyst Parameters

- 460

7.2.4.5 Mechanical Aspects

- 461

7.3 Hydrocracking

- 461

7.3.1 Process Configurations

- 462

7.3.2 Feedstocks and Products

- 465

7.3.3 Application of Hydrocracking

- 467

7.3.4 Catalytic Aspects

- 469

7.3.4.1 Hydrocracking Mechanism and “Ideal Hydrocracking”

- 469

7.3.4.2 Hydrogenation Function

- 471

7.3.4.3 Acidic Function

- 472

7.3.4.4 Hydrocracking Catalysts

- 477

7.4 Catalytic Dewaxing

- 478

7.5 Upgrading of Naphtha and Tops

- 480

7.5.1 Cracking of Normal Paraffins

- 481

7.5.2 Desulfurization of Naphtha ex Fluid Catalytic Cracking

- 484

7.5.3 Isomerization of Light Paraffins

- 486

7.5.3.1 Isomerization over Amorphous Catalysts

- 488

7.5.3.2 Isomerization over Zeolitic Catalysts

- 491

7.5.4 Isomerization of Light Olefins

- 492

7.5.5 Paraffin/Olefin Alkylation

- 493

7.5.6 Zeolite-Supported (De)Hydrogenation Catalysts

- 494
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5.6.1 Aromatization Catalysts</td>
<td>494</td>
</tr>
<tr>
<td>7.5.6.2 Sulfur-Tolerant Hydrogenation Catalysts for Production</td>
<td>496</td>
</tr>
<tr>
<td>of Low Aromatics Diesel</td>
<td>496</td>
</tr>
<tr>
<td>7.6 Zeolites in Synfuels Production</td>
<td>496</td>
</tr>
<tr>
<td>7.6.1 Conversion of Methanol to Gasoline (MTG)</td>
<td>496</td>
</tr>
<tr>
<td>7.6.1.1 Reaction Mechanism</td>
<td>496</td>
</tr>
<tr>
<td>7.6.1.2 The Fixed-Bed MTG Process</td>
<td>497</td>
</tr>
<tr>
<td>7.6.1.3 The Fluid-Bed MTG Process</td>
<td>501</td>
</tr>
<tr>
<td>7.6.2 Integration of Methanol Synthesis and Methanol</td>
<td>502</td>
</tr>
<tr>
<td>Conversion (TIGAS Process)</td>
<td></td>
</tr>
<tr>
<td>7.6.3 Direct Conversion of Synthesis Gas into Gasoline</td>
<td>505</td>
</tr>
<tr>
<td>7.6.4 Conversion of Methanol to Synfuels via Light Olefins</td>
<td>506</td>
</tr>
<tr>
<td>7.6.4.1 Methanol to Light Olefins (MTO) Process</td>
<td>507</td>
</tr>
<tr>
<td>7.6.4.2 Light Olefins to Gasoline and Distillates (MOGD) Process</td>
<td>509</td>
</tr>
<tr>
<td>7.6.5 Upgrading of Fischer-Tropsch Products with Zeolites</td>
<td>510</td>
</tr>
<tr>
<td>7.6.6 Aromatics from Light Paraffins (Cyclar Process)</td>
<td>512</td>
</tr>
<tr>
<td>7.7 Application of Zeolites in the Chemical Industry</td>
<td>513</td>
</tr>
<tr>
<td>7.7.1 Introduction</td>
<td>513</td>
</tr>
<tr>
<td>7.7.2 Acid-Catalyzed Reactions Giving Hydrocarbon Products</td>
<td>514</td>
</tr>
<tr>
<td>7.7.2.1 Ethylbenzene from Benzene plus Ethylene</td>
<td>514</td>
</tr>
<tr>
<td>7.7.2.2 Isopropylbenzene (Cumene) from Benzene plus Propylene</td>
<td>516</td>
</tr>
<tr>
<td>7.7.2.3 Higher Alkylbenzenes</td>
<td>517</td>
</tr>
<tr>
<td>7.7.2.4 p-Ethyltoluene from Toluene plus Ethylene</td>
<td>517</td>
</tr>
<tr>
<td>7.7.2.5 Alkylation of Binuclear Aromatics</td>
<td>518</td>
</tr>
<tr>
<td>7.7.2.6 Xylenes Production: Isomerization (Including Ethylbenzene)</td>
<td>518</td>
</tr>
<tr>
<td>and Toluene Disproportionation</td>
<td></td>
</tr>
<tr>
<td>7.7.3 Oxidation and Ammoximation Processes</td>
<td>522</td>
</tr>
<tr>
<td>7.7.3.1 Hydroxylation of Phenol with Hydrogen Peroxide</td>
<td>523</td>
</tr>
<tr>
<td>7.7.3.2 Epoxidation of Propylene</td>
<td>525</td>
</tr>
<tr>
<td>7.7.3.3 Ammoximation of Cyclohexanone</td>
<td>525</td>
</tr>
<tr>
<td>7.7.4 Amination</td>
<td>526</td>
</tr>
<tr>
<td>7.8 Concluding Remarks</td>
<td>528</td>
</tr>
<tr>
<td>References</td>
<td>530</td>
</tr>
<tr>
<td>Subject Index</td>
<td>539</td>
</tr>
</tbody>
</table>
Catalysis and Zeolites
Fundamentals and Applications
Weitkamp, J.; Puppe, L. (Eds.)
1999, XVIII, 564 p., Hardcover
ISBN: 978-3-540-63650-2