CCL (Construction of Computational Logics and later Constraints in Computational Logic) is the name of an ESPRIT working group which met regularly from 1992 to 1999 (see http://www.ps.uni-sb.de/ccl/). It united research teams from Germany, France, Spain, and Israel, and was managed by the company COSYTEC.

In its final few years, the main emphasis of the working group was on constraints — techniques to solve them and combine them and applications ranging from industrial applications to logic programming and automated deduction. At the end of the working group, in fall 1999, we organized a summer school, intending to summarize the main advances achieved in the field during the previous 7 years. The present book contains the (revised) lecture notes of this school. It contains six chapters, each of which was written by some member(s) of the working group, covering the various aspects of constraints in computational logic. We intend it to be read by non specialists, though a prior knowledge in first-order logic and programming is probably necessary.

Constraints provide a declarative way of representing infinite sets of data. As we (attempt to) demonstrate in this book, they are well suited for the combination of different logical or programming paradigms. This is known since the 1980s for constraint logic programming, but has been combined with functional programming in more recent years; a chapter (by M. Rodríguez-Artalejo) is devoted to the combination of constraints, logic, and functional programming.

The use of constraints in automated deduction is more recent and has turned out to be very successful, moving the control from the meta-level to the constraints, which are now first-class objects. This allows us to keep a history of the reasons why deductions were possible, hence restricting further deductions. A chapter of this book (by H. Ganzinger and R. Nieuwenhuis) is devoted to constraints and theorem proving.

Constraints are not only a nice mathematical construction. The chapter (by H. Simonis) on industrial applications shows the important recent developments of constraint solving in real life applications, for instance scheduling, decision making, and optimization.
Combining constraints (or combining decision procedures) has emerged during the last few years as an important issue in theorem proving and verification. Constraints turn out to be an adequate formalism for combining efficient techniques on each particular domain, thus yielding algorithms for mixed domains. There is now a biannual workshop on these topics, of which the proceedings are published in the LNAI series. The chapter on Combining Constraints Solving (by F. Baader and K. Schulz) introduces the subject and surveys the results.

Before these four chapters on applications of constraint solving, the introductory chapter (by J.-P. Jouannaud and R. Treinen) provides a general introduction to constraint solving. The chapter on constraint solving on terms (by H. Comon and C. Kirchner) introduces the constraint solving techniques which are used in, e.g. applications to automated deduction.

Every chapter includes an important bibliography, to which the reader is referred for more information.

We wish to thank the reviewers of these notes, who helped us improve the quality of this volume. We also thank the European Union who supported this work for 6 years and made possible the meeting in Gif.

January 2001

Hubert Comon
Claude Marché
Ralf Treinen
Full Addresses of Contributors and Editors

Franz Baader
Rheinisch-Westfälische Technische Hochschule Aachen
Lehr- und Forschungsgebiet Theoretische Informatik
Ahornstrasse 55
D-52074 Aachen
Germany
E-mail: baader@informatik.rwth-aachen.de
Web: http://www-lti.informatik.rwth-aachen.de/ti/baader-en.html

Hubert Comon
Laboratoire Spécification et Vérification
École Normale Supérieure de Cachan
61, avenue du Président Wilson
F-94234 Cachan Cedex
France
E-mail: Hubert.Comon@lsv.ens-cachan.fr
Web: www.lsv.ens-cachan.fr/~comon

Harald Ganzinger
Max-Planck-Institut für Informatik
Programming Logics Group, Room 601
Im Stadtwald
D-66123 Saarbrücken
Germany
E-mail: hg@mpi-sb.mpg.de
Web: http://www.mpi-sb.mpg.de/~hg/

Jean-Pierre Jouannaud
Laboratoire de Recherche en Informatique
Bâtiment 490
Université Paris-Sud
F-91405 Orsay Cedex
France
E-mail: jouannau@lri.fr
Web: http://www.lri.fr/demons/jouannau
Claude Kirchner
LORIA & INRIA
615, rue du Jardin Botanique
BP-101
F-54602 Villers-lès-Nancy
France
E-mail: Claude.Kirchner@loria.fr
Web: http://www.loria.fr/~ckirchne/

Claude Marché
Laboratoire de Recherche en Informatique
Bâtiment 490
Université Paris-Sud
F-91405 Orsay Cedex
France
E-mail: marche@lri.fr
Web: http://www.lri.fr/demons/marche

Robert Nieuwenhuis
Technical University of Catalonia (UPC)
Department of Software (LSI), Building C6, Room 112
Jordi Girona 1
E-08034 Barcelona
Spain
E-mail: roberto@lsi.upc.es
Web: http://www.lsi.upc.es/~roberto/home.html

Mario Rodríguez-Artalejo
Universidad Complutense de Madrid
Dpto. de Sistemas Informáticos y Programación
Edificio Fac. Matemáticas
Av. Complutense s/n
E-28040 Madrid
Spain
E-mail: mario@eucmos.sim.ucm.es

Klaus U. Schulz
Centrum für Informations- und Sprachverarbeitung
Ludwig-Maximilians-Universität München
Oettingenstrasse 67
D-80538 München
Germany
E-mail: schulz@cis.uni-muenchen.de
Web: http://www.cis.uni-muenchen.de/people/schulz.html
Helmut Simonis
COSYTEC SA
4, rue Jean Rostand
F-91893 Orsay Cedex
France
Current Address:
Parc Technologies Ltd
2nd Floor, The Tower Building
11 York Road
London SE1 7NX
United Kingdom
E-mail: Helmut.Simonis@parc-technologies.com

Ralf Treinen
Laboratoire de Recherche en Informatique
Bâtiment 490
Université Paris-Sud
F-91405 Orsay Cedex
France
E-mail: treinen@lri.fr
Web: http://www.lri.fr/demons/treinen
Constraints in Computational Logics: Theory and Applications
International Summer School, CCL'99 Gif-sur-Yvette, France, September 5-8, 1999 Revised Lectures
Comon, H.; Marche, C.; Treinen, R. (Eds.)
2001, XII, 316 p., Softcover
ISBN: 978-3-540-41950-1