Contents

Volume I Basic Theory

1 Generalized Differentiation in Banach Spaces 3
 1.1 Generalized Normals to Nonconvex Sets 4
 1.1.1 Basic Definitions and Some Properties 4
 1.1.2 Tangential Approximations 12
 1.1.3 Calculus of Generalized Normals 18
 1.1.4 Sequential Normal Compactness of Sets 27
 1.1.5 Variational Descriptions and Minimality 33
 1.2 Coderivatives of Set-Valued Mappings 39
 1.2.1 Basic Definitions and Representations 40
 1.2.2 Lipschitzian Properties 47
 1.2.3 Metric Regularity and Covering 56
 1.2.4 Calculus of Coderivatives in Banach Spaces 70
 1.2.5 Sequential Normal Compactness of Mappings 75
 1.3 Subdifferentials of Nonsmooth Functions 81
 1.3.1 Basic Definitions and Relationships 82
 1.3.2 Fréchet-Like ε-Subgradients and Limiting Representations 87
 1.3.3 Subdifferentiation of Distance Functions 97
 1.3.4 Subdifferential Calculus in Banach Spaces 112
 1.3.5 Second-Order Subdifferentials 121
 1.4 Commentary to Chap. 1 ... 132

2 Extremal Principle in Variational Analysis 171
 2.1 Set Extremality and Nonconvex Separation 172
 2.1.1 Extremal Systems of Sets 172
 2.1.2 Versions of the Extremal Principle and Supporting Properties ... 174
 2.1.3 Extremal Principle in Finite Dimensions 178
 2.2 Extremal Principle in Asplund Spaces 180
2.2.1 Approximate Extremal Principle in Smooth Banach Spaces 180
2.2.2 Separable Reduction ... 183
2.2.3 Extremal Characterizations of Asplund Spaces 195

2.3 Relations with Variational Principles 203
2.3.1 Ekeland Variational Principle ... 204
2.3.2 Subdifferential Variational Principles 206
2.3.3 Smooth Variational Principles 210

2.4 Representations and Characterizations in Asplund Spaces 214
2.4.1 Subgradients, Normals, and Coderivatives in Asplund Spaces ... 214
2.4.2 Representations of Singular Subgradients and Horizontal Normals to Graphs and Epigraphs 223

2.5 Versions of Extremal Principle in Banach Spaces 230
2.5.1 Axiomatic Normal and Subdifferential Structures 231
2.5.2 Specific Normal and Subdifferential Structures 235
2.5.3 Abstract Versions of Extremal Principle 245

2.6 Commentary to Chap. 2 249

3 Full Calculus in Asplund Spaces 261
3.1 Calculus Rules for Normals and Coderivatives 261
3.1.1 Calculus of Normal Cones ... 262
3.1.2 Calculus of Coderivatives ... 274
3.1.3 Strictly Lipschitzian Behavior and Coderivative Scalarization ... 287

3.2 Subdifferential Calculus and Related Topics 296
3.2.1 Calculus Rules for Basic and Singular Subgradients 296
3.2.2 Approximate Mean Value Theorem with Some Applications 308
3.2.3 Connections with Other Subdifferentials 317
3.2.4 Graphical Regularity of Lipschitzian Mappings 327
3.2.5 Second-Order Subdifferential Calculus 335

3.3 SNC Calculus for Sets and Mappings 341
3.3.1 Sequential Normal Compactness of Set Intersections and Inverse Images ... 341
3.3.2 Sequential Normal Compactness for Sums and Related Operations with Maps 349
3.3.3 Sequential Normal Compactness for Compositions of Maps ... 354

3.4 Commentary to Chap. 3 361

4 Characterizations of Well-Posedness and Sensitivity Analysis 377
4.1 Neighborhood Criteria and Exact Bounds 378
4.1.1 Neighborhood Characterizations of Covering 378
4.1.2 Neighborhood Characterizations of Metric Regularity and Lipschitzian Behavior ... 382
4.2 Pointbased Characterizations ... 384
 4.2.1 Lipschitzian Properties via Normal and Mixed Coderivatives ... 385
 4.2.2 Pointbased Characterizations of Covering and Metric Regularity ... 394
 4.2.3 Metric Regularity under Perturbations ... 399
4.3 Sensitivity Analysis for Constraint Systems 406
 4.3.1 Coderivatives of Parametric Constraint Systems ... 407
 4.3.2 Lipschitzian Stability of Constraint Systems ... 414
4.4 Sensitivity Analysis for Variational Systems 421
 4.4.1 Coderivatives of Parametric Variational Systems ... 422
 4.4.2 Coderivative Analysis of Lipschitzian Stability ... 436
 4.4.3 Lipschitzian Stability under Canonical Perturbations ... 450
4.5 Commentary to Chap. 4 .. 462

Volume II Applications

5 Constrained Optimization and Equilibria ... 3
 5.1 Necessary Conditions in Mathematical Programming 3
 5.1.1 Minimization Problems with Geometric Constraints 4
 5.1.2 Necessary Conditions under Operator Constraints 9
 5.1.3 Necessary Conditions under Functional Constraints 22
 5.1.4 Suboptimality Conditions for Constrained Problems 41
 5.2 Mathematical Programs with Equilibrium Constraints 46
 5.2.1 Necessary Conditions for Abstract MPECs 47
 5.2.2 Variational Systems as Equilibrium Constraints 51
 5.2.3 Refined Lower Subdifferential Conditions for MPECs via Exact Penalization ... 61
 5.3 Multiobjective Optimization .. 69
 5.3.1 Optimal Solutions to Multiobjective Problems 70
 5.3.2 Generalized Order Optimality .. 73
 5.3.3 Extremal Principle for Set-Valued Mappings 83
 5.3.4 Optimality Conditions with Respect to Closed Preferences 92
 5.3.5 Multiobjective Optimization with Equilibrium Constraints 99
 5.4 Subextremality and Suboptimality at Linear Rate 109
 5.4.1 Linear Subextremality of Set Systems 110
 5.4.2 Linear Suboptimality in Multiobjective Optimization 115
 5.4.3 Linear Suboptimality for Minimization Problems 125
 5.5 Commentary to Chap. 5 .. 131
6 Optimal Control of Evolution Systems in Banach Spaces . . 159
6.1 Optimal Control of Discrete-Time and Continuous-time Evolution Inclusions ... 160
 6.1.1 Differential Inclusions and Their Discrete Approximations ... 160
 6.1.2 Bolza Problem for Differential Inclusions and Relaxation Stability ... 168
 6.1.3 Well-Posed Discrete Approximations of the Bolza Problem ... 175
 6.1.4 Necessary Optimality Conditions for Discrete-Time Inclusions ... 184
 6.1.5 Euler-Lagrange Conditions for Relaxed Minimizers .. 198
6.2 Necessary Optimality Conditions for Differential Inclusions without Relaxation ... 210
 6.2.1 Euler-Lagrange and Maximum Conditions for Intermediate Local Minimizers 211
 6.2.2 Discussion and Examples ... 219
6.3 Maximum Principle for Continuous-Time Systems with Smooth Dynamics .. 227
 6.3.1 Formulation and Discussion of Main Results ... 228
 6.3.2 Maximum Principle for Free-Endpoint Problems .. 234
 6.3.3 Transversality Conditions for Problems with Inequality Constraints ... 239
 6.3.4 Transversality Conditions for Problems with Equality Constraints ... 244
6.4 Approximate Maximum Principle in Optimal Control .. 248
 6.4.1 Exact and Approximate Maximum Principles for Discrete-Time Control Systems 248
 6.4.2 Uniformly Upper Subdifferentiable Functions .. 254
 6.4.3 Approximate Maximum Principle for Free-Endpoint Control Systems .. 258
 6.4.4 Approximate Maximum Principle under Endpoint Constraints: Positive and Negative Statements 268
 6.4.5 Approximate Maximum Principle under Endpoint Constraints: Proofs and Applications 276
6.5 Commentary to Chap. 6 ... 297
7 Optimal Control of Distributed Systems ... 335
7.1 Optimization of Differential-Algebraic Inclusions with Delays ... 336
 7.1.1 Discrete Approximations of Differential-Algebraic Inclusions .. 338
 7.1.2 Strong Convergence of Discrete Approximations ... 346
7.1.3 Necessary Optimality Conditions
for Difference-Algebraic Systems 352
7.1.4 Euler-Lagrange and Hamiltonian Conditions
for Differential-Algebraic Systems 357

7.2 Neumann Boundary Control
of Semilinear Constrained Hyperbolic Equations 364
7.2.1 Problem Formulation and Necessary Optimality
Conditions for Neumann Boundary Controls 365
7.2.2 Analysis of State and Adjoint Systems
in the Neumann Problem 369
7.2.3 Needle-Type Variations and Increment Formula 376
7.2.4 Proof of Necessary Optimality Conditions 380

7.3 Dirichlet Boundary Control
of Linear Constrained Hyperbolic Equations 386
7.3.1 Problem Formulation and Main Results
for Dirichlet Controls 387
7.3.2 Existence of Dirichlet Optimal Controls 390
7.3.3 Adjoint System in the Dirichlet Problem 391
7.3.4 Proof of Optimality Conditions 395

7.4 Minimax Control of Parabolic Systems
with Pointwise State Constraints 398
7.4.1 Problem Formulation and Splitting 400
7.4.2 Properties of Mild Solutions
and Minimax Existence Theorem 404
7.4.3 Suboptimality Conditions for Worst Perturbations 410
7.4.4 Suboptimal Controls under Worst Perturbations 422
7.4.5 Necessary Optimality Conditions
under State Constraints 427

7.5 Commentary to Chap. 7 439

8 Applications to Economics 461
8.1 Models of Welfare Economics 461
8.1.1 Basic Concepts and Model Description 462
8.1.2 Net Demand Qualification Conditions for Pareto
and Weak Pareto Optimal Allocations 465
8.2 Second Welfare Theorem for Nonconvex Economies 468
8.2.1 Approximate Versions of Second Welfare Theorem 469
8.2.2 Exact Versions of Second Welfare Theorem 474
8.3 Nonconvex Economies with Ordered Commodity Spaces 477
8.3.1 Positive Marginal Prices 477
8.3.2 Enhanced Results for Strong Pareto Optimality 479
8.4 Abstract Versions and Further Extensions 484
8.4.1 Abstract Versions of Second Welfare Theorem 484
8.4.2 Public Goods and Restriction on Exchange 490
8.5 Commentary to Chap. 8 492
XXII Contents

References .. 477
List of Statements .. 543
Glossary of Notation ... 565
Subject Index ... 569
Variational Analysis and Generalized Differentiation I
Basic Theory
Mordukhovich, B.S.
2006, XXII, 579 p., Hardcover
ISBN: 978-3-540-25437-9