Contents

Part I A Guided Tour to Arbitrage Theory

1 The Story in a Nutshell .. 3
 1.1 Arbitrage ... 3
 1.2 An Easy Model of a Financial Market 4
 1.3 Pricing by No-Arbitrage ... 5
 1.4 Variations of the Example .. 7
 1.5 Martingale Measures .. 7
 1.6 The Fundamental Theorem of Asset Pricing 8

2 Models of Financial Markets on Finite Probability Spaces 11
 2.1 Description of the Model ... 11
 2.2 No-Arbitrage and the Fundamental Theorem of Asset Pricing 16
 2.3 Equivalence of Single-period with Multiperiod Arbitrage 22
 2.4 Pricing by No-Arbitrage ... 23
 2.5 Change of Numéraire ... 27
 2.6 Kramkov’s Optional Decomposition Theorem 31

3 Utility Maximisation on Finite Probability Spaces 33
 3.1 The Complete Case ... 34
 3.2 The Incomplete Case ... 41
 3.3 The Binomial and the Trinomial Model 45

4 Bachelier and Black-Scholes .. 57
 4.1 Introduction to Continuous Time Models 57
 4.2 Models in Continuous Time 57
 4.3 Bachelier’s Model .. 58
 4.4 The Black-Scholes Model ... 60
Contents

5 The Kreps-Yan Theorem

- 5.1 A General Framework .. 71
- 5.2 No Free Lunch .. 76

6 The Dalang-Morton-Willinger Theorem

- 6.1 Statement of the Theorem ... 85
- 6.2 The Predictable Range .. 86
- 6.3 The Selection Principle .. 89
- 6.4 The Closedness of the Cone C .. 92
- 6.5 Proof of the Dalang-Morton-Willinger Theorem for $T = 1$ 94
- 6.6 A Utility-based Proof of the DMW Theorem for $T = 1$ 96
- 6.7 Proof of the Dalang-Morton-Willinger Theorem for $T \geq 1$
 by Induction on T .. 102
- 6.8 Proof of the Closedness of K in the Case $T \geq 1$ 103
- 6.9 Proof of the Closedness of C in the Case $T \geq 1$
 under the (NA) Condition .. 105
- 6.10 Proof of the Dalang-Morton-Willinger Theorem for $T \geq 1$
 using the Closedness of C ... 107
- 6.11 Interpretation of the L^∞-Bound in the DMW Theorem 108

7 A Primer in Stochastic Integration

- 7.1 The Set-up ... 111
- 7.2 Introduction on Stochastic Processes 112
- 7.3 Strategies, Semi-martingales and Stochastic Integration 117

8 Arbitrage Theory in Continuous Time: an Overview

- 8.1 Notation and Preliminaries .. 129
- 8.2 The Crucial Lemma ... 131
- 8.3 Sigma-martingales and the Non-locally Bounded Case 140

Part II The Original Papers

9 A General Version of the Fundamental Theorem
 of Asset Pricing (1994)

- 9.1 Introduction ... 149
- 9.2 Definitions and Preliminary Results 155
- 9.3 No Free Lunch with Vanishing Risk 160
- 9.4 Proof of the Main Theorem .. 164
- 9.5 The Set of Representing Measures 181
- 9.6 No Free Lunch with Bounded Risk 186
- 9.7 Simple Integrands ... 190
- 9.8 Appendix: Some Measure Theoretical Lemmas 202
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction and Known Results</td>
<td>207</td>
</tr>
<tr>
<td>10.2</td>
<td>Construction of the Example</td>
<td>210</td>
</tr>
<tr>
<td>10.3</td>
<td>Incomplete Markets</td>
<td>212</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>217</td>
</tr>
<tr>
<td>11.2</td>
<td>Basic Theorems</td>
<td>219</td>
</tr>
<tr>
<td>11.3</td>
<td>Duality Relation</td>
<td>222</td>
</tr>
<tr>
<td>11.4</td>
<td>Hedging and Change of Numéraire</td>
<td>225</td>
</tr>
<tr>
<td>12</td>
<td>The Existence of Absolutely Continuous Local Martingale Measures (1995)</td>
<td>231</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>231</td>
</tr>
<tr>
<td>12.2</td>
<td>The Predictable Radon-Nikodým Derivative</td>
<td>235</td>
</tr>
<tr>
<td>12.3</td>
<td>The No-Arbitrage Property and Immediate Arbitrage</td>
<td>239</td>
</tr>
<tr>
<td>12.4</td>
<td>The Existence of an Absolutely Continuous Local Martingale Measure</td>
<td>244</td>
</tr>
<tr>
<td>13</td>
<td>The Banach Space of Workable Contingent Claims in Arbitrage Theory (1997)</td>
<td>251</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>251</td>
</tr>
<tr>
<td>13.2</td>
<td>Maximal Admissible Contingent Claims</td>
<td>255</td>
</tr>
<tr>
<td>13.3</td>
<td>The Banach Space Generated by Maximal Contingent Claims</td>
<td>261</td>
</tr>
<tr>
<td>13.4</td>
<td>Some Results on the Topology of \mathcal{G}</td>
<td>266</td>
</tr>
<tr>
<td>13.5</td>
<td>The Value of Maximal Admissible Contingent Claims on the Set \mathcal{M}^e</td>
<td>272</td>
</tr>
<tr>
<td>13.6</td>
<td>The Space \mathcal{G} under a Numéraire Change</td>
<td>274</td>
</tr>
<tr>
<td>13.7</td>
<td>The Closure of \mathcal{G}^∞ and Related Problems</td>
<td>276</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>279</td>
</tr>
<tr>
<td>14.2</td>
<td>Sigma-martingales</td>
<td>280</td>
</tr>
<tr>
<td>14.3</td>
<td>One-period Processes</td>
<td>284</td>
</tr>
<tr>
<td>14.4</td>
<td>The General \mathbb{R}^d-valued Case</td>
<td>294</td>
</tr>
<tr>
<td>14.5</td>
<td>Duality Results and Maximal Elements</td>
<td>305</td>
</tr>
<tr>
<td>15</td>
<td>A Compactness Principle for Bounded Sequences of Martingales with Applications (1999)</td>
<td>319</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>319</td>
</tr>
<tr>
<td>15.2</td>
<td>Notations and Preliminaries</td>
<td>326</td>
</tr>
</tbody>
</table>
Contents

15.3 An Example ... 332
15.4 A Substitute of Compactness
 for Bounded Subsets of \mathcal{H}^1 334
 15.4.1 Proof of Theorem 15.A 335
 15.4.2 Proof of Theorem 15.C 337
 15.4.3 Proof of Theorem 15.B 339
 15.4.4 A proof of M. Yor’s Theorem 345
 15.4.5 Proof of Theorem 15.D 346
15.5 Application ... 352

Part III Bibliography

References ... 359
The Mathematics of Arbitrage
Delbaen, F.; Schachermayer, W.
2006, XVI, 371 p., Hardcover
ISBN: 978-3-540-21992-7