Contents

Section I Introduction

<table>
<thead>
<tr>
<th>1</th>
<th>The Various Effects of Insects on Ecosystem Functioning</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Summary</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>A Brief Overview of Insect Effects on Ecosystem Function</td>
<td>8</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Insect Effects on Ecosystem Function</td>
<td>8</td>
</tr>
<tr>
<td>1.3.1.1</td>
<td>Herbivory</td>
<td>8</td>
</tr>
<tr>
<td>1.3.1.2</td>
<td>Plant–Insect Mutualisms</td>
<td>14</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Other Direct and Indirect Effects of Insects</td>
<td>14</td>
</tr>
<tr>
<td>1.4</td>
<td>The Aim and Structure of this Book</td>
<td>15</td>
</tr>
<tr>
<td>References</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

Section II Insects and the Belowground System

<table>
<thead>
<tr>
<th>2</th>
<th>Insect Herbivores, Nutrient Cycling and Plant Productivity</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>Introduction</td>
<td>28</td>
</tr>
<tr>
<td>2.3</td>
<td>Decomposition</td>
<td>28</td>
</tr>
<tr>
<td>2.3.1</td>
<td>The Resources Available</td>
<td>28</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Effects of Insect Herbivory on Decomposition</td>
<td>31</td>
</tr>
</tbody>
</table>
3 Indirect Effects of Invertebrate Herbivory on the Decomposer Subsystem

D.A. Wardle and R.D. Bardgett

3.1 Summary

3.2 Introduction

3.3 Mechanistic Bases of Invertebrate Herbivore Effects

3.3.1 Immediate Effects on Resource Quantity

3.3.2 Longer-Term Effects on Resource Quantity

3.3.3 Effects of Changed Litter Quality

3.3.4 Return of Invertebrate Waste Products

3.3.5 Effects of Changes in Vegetation Composition

3.3.6 Feedbacks and Aboveground Consequences

3.4 Significance of Invertebrate Herbivore Outbreaks

3.5 Multiple Species Herbivore Communities

3.6 Comparisons of Ecosystems

3.7 Conclusions

References
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>Plants as Drivers of Rhizosphere Interactions</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>Belowground Interactions and the Herbivore System</td>
<td>74</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Effects of Mycorrhiza and Rhizobacteria on Aboveground Herbivores</td>
<td>76</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Interactions with the Micro-Decomposer Food Web</td>
<td>77</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>The Bacterial Loop and Herbivore Performance</td>
<td>78</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>The Fungal Food Chain and Herbivore Performance</td>
<td>79</td>
</tr>
<tr>
<td>4.3.2.3</td>
<td>Ecosystem Engineers and Herbivore Performance</td>
<td>81</td>
</tr>
<tr>
<td>4.4</td>
<td>Top-Down Effects by Subsidizing Generalist Predators</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>85</td>
</tr>
</tbody>
</table>

5 Belowground Herbivores and Ecosystem Processes

G.J. Masters

5.1	Summary	93
5.2	Introduction	94
5.3	Experimenting with Belowground Insect Herbivores	94
5.4	Belowground Herbivory and Plant Productivity: Allocation and Biomass	97
5.5	Implications of Belowground Herbivory for Nutrient Cycling	101
5.6	Implications of Belowground Herbivory for Multitrophic Interactions	104
5.7	Conclusion	109
	References	109

Section III Plant–Insect Interactions and Ecosystem Processes

6 Bottom-Up Effects and Feedbacks in Simple and Diverse Experimental Grassland Communities

6.1	Summary	115
6.2	Introduction	116
6.3	Effects of Plant Diversity on Herbivorous Insects Feeding Above Ground	117
6.3.1 Hypotheses Predicting the Response of Herbivores to Higher Plant Diversity 117
6.3.2 Responses of Specialist and Generalist Herbivores in Plant Diversity Experiments 119
6.3.3 Concomitant Responses of Natural Enemies of Herbivores ... 123
6.3.4 Insect Herbivores as Drivers of Ecosystem Processes ... 124
6.4 Effects of Plant Diversity on Pathogens ... 125
6.5 Belowground Food Web ... 126
6.5.1 Plant Biomass and Microbial Response .. 126
6.5.2 Soil Animals that Feed on Microbes .. 128
6.6 Conclusions .. 129
References .. 130

7 The Potential of Phytophagous Insects in Restoring Invaded Ecosystems: Examples from Biological Weed Control ... H. ZWÖLFER and H. ZIMMERMANN

7.1 Summary ... 135
7.2 Introduction ... 136
7.3 Success Rates and Successes in Biological Weed Control ... 137
7.4 Weed Characteristics and Positive Traits of Insects in Biological Control .. 138
7.4.1 Weed Species .. 139
7.4.2 Insect Species ... 139
7.5 Three Examples of Successful Weed Control .. 140
7.5.1 Rhinocyllus conicus on Carduus nutans ... 140
7.5.2 Interactions Between Three Weevil Species in the Biocontrol of the Invader Sesbania punicea in South Africa .. 143
7.5.2.1 The Seed-Destroying Agents: Trichapion lativentre and Rhysomatus marginatus 144
7.5.2.2 The Stem-Borer: Neodiplogrammus quadripartitus .. 145
7.5.3 Aquatic Weeds ... 146
7.6 Discussion and Conclusions ... 147
References .. 150

8 Plant-Insect–Pathogen Interactions on Local and Regional Scales ... A. KRUESS, S. EBER, S. KLUTH and T. TSCHARNTKE

8.1 Summary ... 155
8.2 Introduction ... 156
8.3 Biological Weed Control, Interactions and Ecosystem Processes ... 157
 8.3.1 Classical Biological Control .. 157
 8.3.2 Plant–Pathogen–Herbivore Interactions .. 158
8.4 Creeping Thistle, Insects, Pathogens and Processes .. 160
 8.4.1 The Creeping Thistle (Cirsium arvense) .. 160
 8.4.2 Interactions Between Pathogens and Insect Vectors on a Local Scale 161
 8.4.3 Regional Dynamics of Cirsium arvense and an Associated Herbivore 163
 8.4.4 The Influence of Landscape Context at Different Spatial Scales 165
8.5 Conclusions and Future Outlook .. 168
References .. 169

9 Food Web Interactions and Ecosystem Processes .. 175
 A. Janssen and M.W. Sabelis

 9.1 Summary ... 175
 9.2 Introduction ... 175
 9.3 Interactions Among Entire Trophic Levels .. 178
 9.4 Effects of Diversity Within Trophic Levels ... 179
 9.4.1 Apparent Competition .. 180
 9.4.2 Omnivory .. 180
 9.4.3 Intraguild Predation .. 181
 9.4.4 Plant-Mediated Indirect Interactions Between Herbivores 181
 9.4.5 Indirect Plant Defences .. 182
 9.4.6 Interactions Among Plants ... 183
 9.4.7 Behavioural Effects .. 184
 9.5 Conclusions and Perspectives ... 184
References .. 186

10 A General Rule for Predicting When Insects Will Have Strong Top-Down Effects on Plant Communities: On the Relationship Between Insect Outbreaks and Host Concentration ... 193
 W.P. Carson, J. Patrick Cronin and Z.T. Long

 10.1 Summary ... 193
 10.2 Introduction ... 193
 10.3 The Significance of Insect Outbreaks .. 194
10.3.1 Insect Outbreaks Are Common in Numerous Community-Types Worldwide 195
10.3.2 Insect Outbreaks Are More Common and More Devastating per Host in Large, Dense and Continuous Host Stands ... 199
10.3.3 Native Outbreaking Insects Function as Keystone Species by Reducing the Abundance of the Dominant Species and Increasing Diversity .. 200
10.3.4 Insect Outbreaks Are Common Relative to Host Life Span Yet May Often Go Unnoticed 201
10.3.5 Chrysomelid Beetles and Lepidoptera Seem to be Responsible for the Majority of Outbreaks 201
10.4 The Host Concentration Model May Predict Insect Impact on Plant Communities at Multiple Spatial Scales Better Than Resource Supply Theory .. 202
10.4.1 Resource Supply Theory ... 202
10.4.2 The Host Concentration Model (HCM) .. 203
10.4.3 Distinguishing Between the Two Models .. 204
10.5 Relationship to Other Related Processes Proposed to Promote Diversity 204
10.5.1 Does Pathogen Impact Increase with Host Concentration? .. 205
References ... 205

11. Summary ... 213
11.2 Introduction ... 214
11.3 Life Histories of Canopy Insects ... 215
11.3.1 Aphids ... 215
11.3.2 Scale Insects .. 215
11.3.3 Lepidopterous Larvae .. 216
11.4 Population Ecological Background of Nutrient Fluxes .. 217
11.4.1 Sites and Experimental Setup .. 219
11.4.2 Results .. 220
11.5 Trophic Effects and Organic Pathways ... 224
11.6 Herbivore-Mediated Changes in Quality and Quantity of Nutrient Fluxes 226
11.7 Synthesis and Conclusions .. 230
11.7.1 Understanding the Temporal Dynamics of Energy and Nutrient Fluxes 230
11.7.2 Understanding the Spatial Variability in Fluxes .. 231
Section IV Methods: Reducing, Enhancing and Simulating Insect Herbivory

12 Simulating Herbivory: Problems and Possibilities
 J. Hjältén

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Summary</td>
<td>243</td>
</tr>
<tr>
<td>12.2</td>
<td>Introduction to the Problem</td>
<td>244</td>
</tr>
<tr>
<td>12.3</td>
<td>Advantages of Simulated Herbivory</td>
<td>245</td>
</tr>
<tr>
<td>12.4</td>
<td>Disadvantages of Simulated Herbivory</td>
<td>247</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Simple Biotic Interactions</td>
<td>247</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Complex Biotic Interactions</td>
<td>249</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Basic Ecosystem Processes</td>
<td>250</td>
</tr>
<tr>
<td>12.5</td>
<td>Conclusions and Suggestions for the Future</td>
<td>251</td>
</tr>
<tr>
<td>References</td>
<td>253</td>
<td></td>
</tr>
</tbody>
</table>

13 The Use and Usefulness of Artificial Herbivory in Plant–Herbivore Studies
 K. Lehtilä and E. Boalt

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Summary</td>
<td>257</td>
</tr>
<tr>
<td>13.2</td>
<td>Introduction</td>
<td>258</td>
</tr>
<tr>
<td>13.3</td>
<td>Material and Methods</td>
<td>258</td>
</tr>
<tr>
<td>13.4</td>
<td>Commonness of Differences Between Natural and Artificial Herbivory</td>
<td>260</td>
</tr>
<tr>
<td>13.5</td>
<td>Strength of the Effect of Natural and Artificial Damage</td>
<td>266</td>
</tr>
<tr>
<td>13.6</td>
<td>Responses of Different Types of Response Traits to Artificial and Natural Damage</td>
<td>267</td>
</tr>
<tr>
<td>13.7</td>
<td>Simulations of Mammalian and Invertebrate Herbivory</td>
<td>269</td>
</tr>
<tr>
<td>13.8</td>
<td>Attempts of Exact Simulation</td>
<td>270</td>
</tr>
<tr>
<td>13.9</td>
<td>Conclusions</td>
<td>271</td>
</tr>
<tr>
<td>References</td>
<td>273</td>
<td></td>
</tr>
</tbody>
</table>
From Mesocosms to the Field: The Role and Value of Cage Experiments in Understanding Top-Down Effects in Ecosystems

O.J. Schmitz

14.1 Summary

14.2 Introduction

14.3 Research Approach

14.4 In-Ecosystem Investigation Using Enclosure Experiments

14.4.1 Natural History: Knowing the Players in the System

14.4.2 Enclosure Cages: Design and Biophysical Properties

14.4.3 Considerations for the Design of Cage Experiments

14.4.3.1 Artificial Complements of Populations or Communities in Enclosure Cages Are Not Realistic

14.4.3.2 Experimental Outcome Could Be an Artifact of the Venue

14.4.3.3 Enclosures Unrealistically Constrain Movement of Species

14.4.3.4 Time Scale of Enclosure Experiments Exclude or Distort Important Features of Communities and Ecosystems

14.4.4 Mechanistic Insights from Enclosure Cage Experiments

14.4.5 Of-Ecosystem Studies: Testing the Reliability of Mechanistic Insights from Cage Experiments

14.4.5.1 Direct and Indirect Effects of Top Predators

14.4.5.2 Top Predator Effects on Plant Diversity and Productivity

References

Reducing Herbivory Using Insecticides

E. Siemann, W.P. Carson, W.E. Rogers and W.W. Weisser

15.1 Summary

15.2 Basic Concepts

15.3 Using Insecticides to Infer the Role of Herbivores

15.4 Ghost of Herbivory Past

15.5 Artifacts of Method May Masquerade as Release from Herbivory

15.5.1 What Types of Artifacts Are a Concern?

15.5.2 Overview of Published Studies

15.5.3 Quantification of Herbivore Damage

15.5.4 Phytotoxic Effects

15.5.5 Insecticides May Be Toxic to Several Groups of Insects

15.5.6 Effects of Insecticides on Non-Arthropods

15.5.7 Effects of Insecticides on Soil Organisms
Insects and Ecosystem Function
Weisser, W.W.; Siemann, E. (Eds.)
2008, XXI, 415 p., Hardcover
ISBN: 978-3-540-21672-8