Contents

Section I Introduction

1 The Various Effects of Insects on Ecosystem Functioning
 W.W. Weisser and E. Siemann
 3

 1.1 Summary
 3

 1.2 Introduction
 3

 1.3 A Brief Overview of Insect Effects on Ecosystem Function
 8

 1.3.1 Insect Effects on Ecosystem Function
 Via Interactions with Plants
 8

 1.3.1.1 Herbivory
 8

 1.3.1.2 Plant–Insect Mutualisms
 14

 1.3.2 Other Direct and Indirect Effects of Insects
 on Ecosystem Function
 14

 1.4 The Aim and Structure of this Book
 15

 References
 19

Section II Insects and the Belowground System

2 Insect Herbivores, Nutrient Cycling and Plant Productivity
 S.E. Hartley and T. H. Jones
 27

 2.1 Summary
 27

 2.2 Introduction
 28

 2.3 Decomposition
 28

 2.3.1 The Resources Available
 28

 2.3.2 Effects of Insect Herbivory on Decomposition
 31
2.3.2.1 Herbivory and Litter Quality ... 31
2.3.2.2 Herbivory, Root Exudation and Root Biomass 32
2.4 Nutrient Cycling and Plant Productivity 33
2.4.1 Effects on Carbon and Nitrogen Cycling 34
2.4.1.1 Methane and Carbon Dioxide .. 34
2.4.1.2 Nitrogen and Phosphorus ... 35
2.4.1.3 Inputs from Aboveground Herbivores 36
2.4.1.4 The Importance of Belowground Biota: Evidence from Controlled Environment Studies 39
2.4.1.5 Insect Herbivory and Spatial Variation in Nutrient Availability ... 40
2.4.2 Herbivory and Plant Biomass ... 41
2.5 Conclusions ... 45
References ... 46

3 Indirect Effects of Invertebrate Herbivory on the Decomposer Subsystem ... 53
D.A. WARDLE and R.D. BARDGETT

3.1 Summary ... 53
3.2 Introduction ... 54
3.3 Mechanistic Bases of Invertebrate Herbivore Effects 54
3.3.1 Immediate Effects on Resource Quantity 56
3.3.2 Longer-Term Effects on Resource Quantity 56
3.3.3 Effects of Changed Litter Quality 57
3.3.4 Return of Invertebrate Waste Products 58
3.3.5 Effects of Changes in Vegetation Composition 59
3.3.6 Feedbacks and Aboveground Consequences 61
3.4 Significance of Invertebrate Herbivore Outbreaks 61
3.5 Multiple Species Herbivore Communities 62
3.6 Comparisons of Ecosystems ... 64
3.7 Conclusions ... 65
References ... 66

4 Biotic Interactions in the Rhizosphere: Effects on Plant Growth and Herbivore Development 71
M. BONKOWSKI and S. SCHEU

4.1 Summary ... 71
4.2 The Rhizosphere – Interface of Intense Microbial and Faunal Interactions ... 72
Contents

4.2.1 Plants as Drivers of Rhizosphere Interactions

4.3 Belowground Interactions and the Herbivore System

4.3.1 Effects of Mycorrhiza and Rhizobacteria on Aboveground Herbivores

4.3.2 Interactions with the Micro- Decomposer Food Web

4.3.2.1 The Bacterial Loop and Herbivore Performance

4.3.2.2 The Fungal Food Chain and Herbivore Performance

4.3.2.3 Ecosystem Engineers and Herbivore Performance

4.4 Top-Down Effects by Subsidizing Generalist Predators

References

5 Belowground Herbivores and Ecosystem Processes

G.J. Masters

5.1 Summary

5.2 Introduction

5.3 Experimenting with Belowground Insect Herbivores

5.4 Belowground Herbivory and Plant Productivity: Allocation and Biomass

5.5 Implications of Belowground Herbivory for Nutrient Cycling

5.6 Implications of Belowground Herbivory for Multitrophic Interactions

5.7 Conclusion

References

Section III Plant–Insect Interactions and Ecosystem Processes

6 Bottom-Up Effects and Feedbacks in Simple and Diverse Experimental Grassland Communities

6.1 Summary

6.2 Introduction

6.3 Effects of Plant Diversity on Herbivorous Insects Feeding Above Ground
6.3.1 Hypotheses Predicting the Response of Herbivores to Higher Plant Diversity .. 117
6.3.2 Responses of Specialist and Generalist Herbivores in Plant Diversity Experiments 119
6.3.3 Concomitant Responses of Natural Enemies of Herbivores ... 123
6.3.4 Insect Herbivores as Drivers of Ecosystem Processes .. 124
6.4 Effects of Plant Diversity on Pathogens .. 125
6.5 Belowground Food Web ... 126
6.5.1 Plant Biomass and Microbial Response .. 126
6.5.2 Soil Animals that Feed on Microbes .. 128
6.6 Conclusions .. 129
References .. 130

7 The Potential of Phytophagous Insects in Restoring Invaded Ecosystems: Examples from Biological Weed Control . . . 135
H. Zwölfer and H. Zimmermann

7.1 Summary .. 135
7.2 Introduction .. 136
7.3 Success Rates and Successes in Biological Weed Control ... 137
7.4 Weed Characteristics and Positive Traits of Insects in Biological Control .. 138
7.4.1 Weed Species .. 139
7.4.2 Insect Species ... 139
7.5 Three Examples of Successful Weed Control .. 140
7.5.1 Rhinocyllus conicus on Carduus nutans ... 140
7.5.2 Interactions Between Three Weevil Species in the Biocontrol of the Invader Sesbania punicea in South Africa .. 143
7.5.2.1 The Seed-Destroying Agents: Trichapion lativentre and Rhysomatous marginatus 144
7.5.2.2 The Stem-Borer: Neodiplogrammus quadritvittatus .. 145
7.5.3 Aquatic Weeds .. 146
7.6 Discussion and Conclusions ... 147
References .. 150

8 Plant-Insect–Pathogen Interactions on Local and Regional Scales ... 155
A. Kruess, S. Eber, S. Kluth and T. Tscharntke

8.1 Summary .. 155
8.2 Introduction .. 156
10.3.1 Insect Outbreaks Are Common in Numerous Community-Types Worldwide ... 195
10.3.2 Insect Outbreaks Are More Common and More Devastating per Host in Large, Dense and Continuous Host Stands ... 199
10.3.3 Native Outbreaking Insects Function as Keystone Species by Reducing the Abundance of the Dominant Species and Increasing Diversity ... 200
10.3.4 Insect Outbreaks Are Common Relative to Host Life Span Yet May Often Go Unnoticed 201
10.3.5 Chrysomelid Beetles and Lepidoptera Seem to be Responsible for the Majority of Outbreaks 201
10.4 The Host Concentration Model May Predict Insect Impact on Plant Communities at Multiple Spatial Scales Better Than Resource Supply Theory 202
10.4.1 Resource Supply Theory ... 202
10.4.2 The Host Concentration Model (HCM) ... 203
10.4.3 Distinguishing Between the Two Models 204
10.5 Relationship to Other Related Processes Proposed to Promote Diversity .. 204
10.5.1 Does Pathogen Impact Increase with Host Concentration? .. 205
References ... 205

11 The Ecology Driving Nutrient Fluxes in Forests .. 213
B. Stadler, E. Mühlenberg and B. Michalzik

11.1 Summary .. 213
11.2 Introduction ... 214
11.3 Life Histories of Canopy Insects ... 215
11.3.1 Aphids .. 215
11.3.2 Scale Insects ... 215
11.3.3 Lepidopterous Larvae .. 216
11.4 Population Ecological Background of Nutrient Fluxes ... 217
11.4.1 Sites and Experimental Setup .. 219
11.4.2 Results ... 220
11.5 Trophic Effects and Organic Pathways ... 224
11.6 Herbivore-Mediated Changes in Quality and Quantity of Nutrient Fluxes 226
11.7 Synthesis and Conclusions ... 230
11.7.1 Understanding the Temporal Dynamics of Energy and Nutrient Fluxes 230
11.7.2 Understanding the Spatial Variability in Fluxes ... 231

ContentsXII
14 From Mesocosms to the Field: The Role and Value of Cage Experiments in Understanding Top-Down Effects in Ecosystems

O.J. Schmitz

14.1 Summary

14.2 Introduction

14.3 Research Approach

14.4 In-Ecosystem Investigation Using Enclosure Experiments

14.4.1 Natural History: Knowing the Players in the System

14.4.2 Enclosure Cages: Design and Biophysical Properties

14.4.3 Considerations for the Design of Cage Experiments

14.4.3.1 Artificial Complements of Populations or Communities in Enclosure Cages Are Not Realistic

14.4.3.2 Experimental Outcome Could Be an Artifact of the Venue

14.4.3.3 Enclosures Unrealistically Constrain Movement of Species

14.4.3.4 Time Scale of Enclosure Experiments Exclude or Distort Important Features of Communities and Ecosystems

14.4.4 Mechanistic Insights from Enclosure Cage Experiments

14.4.4.1 Identifying the Potential for Top-Down Control

14.4.5 Of-Ecosystem Studies: Testing the Reliability of Mechanistic Insights from Cage Experiments

14.4.5.1 Direct and Indirect Effects of Top Predators

14.4.5.2 Top Predator Effects on Plant Diversity and Productivity

References

15 Reducing Herbivory Using Insecticides

E. Siemann, W.P. Carson, W.E. Rogers and W.W. Weisser

15.1 Summary

15.2 Basic Concepts

15.3 Using Insecticides to Infer the Role of Herbivores

15.4 Ghost of Herbivory Past

15.5 Artifacts of Method May Masquerade as Release from Herbivory

15.5.1 What Types of Artifacts Are a Concern?

15.5.2 Overview of Published Studies

15.5.3 Quantification of Herbivore Damage

15.5.4 Phytotoxic Effects

15.5.5 Insecticides May Be Toxic to Several Groups of Insects

15.5.6 Effects of Insecticides on Non-Arthropods

15.5.7 Effects of Insecticides on Soil Organisms
16 The Role of Herbivores in Exotic Plant Invasions: Insights Using a Combination of Methods to Enhance or Reduce Herbivory

W.E. Rogers and E. Siemann

16.1 Summary

16.2 Introduction

16.3 The Role of Herbivores in Exotic Plant Invasions

16.4 Focal Plant Species

16.5 Experimental Methods for Assessing Herbivory Effects

16.5.1 Common Garden/Reciprocal Transplant Studies

16.5.2 Reducing Herbivory on Target Plants Using Insecticide Sprays

16.5.3 Reducing Herbivory on Community Assemblages Using Insecticide Sprays

16.5.4 Factorial Manipulations of Herbivory, Resources and Competition

16.5.5 Simulating Herbivory Via Mechanical Leaf Damage

16.5.6 Simulating Herbivory Via Mechanical Root Damage

16.5.7 Simulating Herbivory Using Herbicide Sprays

16.5.8 Assessing Herbivore Damage Using Exclosures and Enclosures

16.6 Implications and Potential Significance

References

17 Herbivore-Specific Transcriptional Responses and Their Research Potential for Ecosystem Studies

C. Voelckel and I.T. Baldwin

17.1 Summary

17.2 The Subtle Effects of Insects on Ecosystem Function

17.3 Transcriptional Regulation of Plant Responses

17.4 Insect-Induced Transcriptional Changes
Section V Synthesis

18 Testing the Role of Insects in Ecosystem Functioning 383

E. Siemann and W.W. Weisser

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>Summary</td>
<td>383</td>
</tr>
<tr>
<td>18.2</td>
<td>Introduction</td>
<td>384</td>
</tr>
<tr>
<td>18.3</td>
<td>Simple Models of Niche Space</td>
<td>385</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Reduced Vigour Model</td>
<td>385</td>
</tr>
<tr>
<td>18.3.2</td>
<td>Reduced Range of Tolerance Model</td>
<td>387</td>
</tr>
<tr>
<td>18.3.3</td>
<td>Specialist Herbivores</td>
<td>388</td>
</tr>
<tr>
<td>18.4</td>
<td>Effects of Herbivores in Resource Competition Models</td>
<td>389</td>
</tr>
<tr>
<td>18.4.1</td>
<td>Specialist Herbivores in Resource Competition Models</td>
<td>391</td>
</tr>
<tr>
<td>18.4.2</td>
<td>Generalist Herbivores in Resource Competition Models</td>
<td>395</td>
</tr>
<tr>
<td>18.5</td>
<td>Differential Impacts on Plants with Different Traits</td>
<td>396</td>
</tr>
<tr>
<td>18.6</td>
<td>Conclusions from the Modelling Work</td>
<td>396</td>
</tr>
<tr>
<td>18.7</td>
<td>Suggestions for Future Studies</td>
<td>397</td>
</tr>
<tr>
<td>18.7.1</td>
<td>Exploring Below- and Aboveground Interactions in More Detail</td>
<td>397</td>
</tr>
<tr>
<td>18.7.2</td>
<td>Measuring Herbivory Effects at Nominal Levels as Well as in Outbreak Situations</td>
<td>398</td>
</tr>
<tr>
<td>18.7.3</td>
<td>Quantifying the Effects of Plant Resource Allocation Under Herbivory for Ecosystem Functioning</td>
<td>399</td>
</tr>
<tr>
<td>18.7.4</td>
<td>Combining Various Methodologies to Achieve an Understanding of Insect Effects on Ecosystem Function</td>
<td>399</td>
</tr>
</tbody>
</table>

References ... 400

Subject Index .. 403

Taxonomic Index .. 409