Contents

Computational Methods for Protein Structure Prediction and Fold Recognition .. 1
I. CYMERMAN, M. FEDER, M. PAWŁOWSKI, M.A. KUROWSKI, J.M. BUJNICKI

1 Primary Structure Analysis .. 1
1.1 Database Searches .. 1
1.2 Protein Domain Identification 3
1.3 Prediction of Disordered Regions 5
2 Secondary Structure Prediction 5
2.1 Helices and Strands and Otherwise 5
2.2 Transmembrane Helices .. 8
3 Protein Fold Recognition .. 8
4 Predicting All-in-One-Go .. 12
5 Pitfalls of Fold Recognition 14
References ... 16

‘Meta’ Approaches to Protein Structure Prediction 23
J.M. BUJNICKI, D. FISCHER

1 Introduction ... 23
2 The Utility of Servers as Standard Tools for Protein Structure Prediction .. 24
2.1 Consensus ‘Meta-Predictors’: Is the Whole Greater Than the Sum of the Parts? 25
2.2 Automated Meta-Predictors 26
2.3 Hybrid Methods: Going Beyond the “Simple Selection” of Models .. 29
3 Future Prospects .. 31
References ... 32
From Molecular Modeling to Drug Design
M. Cohen-Gonsaud, V. Catherinot, G. Labesse, D. Douguet

1 Introduction ___ 35
1.1 General Context ______________________________________ 35
1.2 Comparative Modeling _________________________________ 36
1.3 Drug Design and Screening ______________________________ 37
2 Comparative Modeling ____________________________________ 38
2.1 Sequence Gathering and Alignment ________________________ 38
2.1.1 Sequence Database Searches ___________________________ 38
2.2 Structural Alignments ________________________ 39
2.2.1 Fold Recognition _______________________________ 40
2.2.2 Structural Alignment Refinement ________________________ 40
2.2.3 Active Site Recognition ___________________________ 41
2.2.4 A Biological Application ___________________________ 42
2.3 Complete Model Achievement ____________________________ 43
2.3.1 Global Structure Modeling ____________________________ 44
2.3.2 Optimization of Side-Chain Conformation ___________ 44
2.3.3 Insertions/Deletions Building __________________________ 46
2.3.4 Modeling Protein Quaternary Structures _______________ 47
2.3.5 Energy Minimization and Molecular Dynamics _______ 48
2.4 Model Validation ______________________________________ 49
2.4.1 Theoretical Model Validation _________________________ 49
2.4.2 Ligand-Based Model Selection _________________________ 50
2.4.3 Experimental Evaluation of Models _____________________ 50
2.5 Current Limitations __________________________________ 51
3 Model-Based Drug Design _________________________________ 52
3.1 Comparative Drug Design ________________________________ 53
3.2 Docking Methodologies _________________________________ 55
3.2.1 Knowledge-Based Potentials __________________________ 55
3.2.2 Regression-Based (or Empirical) Methods ____________ 56
3.2.3 Physics-Based Methods ______________________________ 56
3.2.4 Flexible Models ____________________________________ 57
3.2.5 Fragment-Based Drug Design __________________________ 58
3.3 Virtual Screening Using Models __________________________ 58
3.3.1 Docking Onto Medium Resolution Models _____________ 58
3.3.2 Docking Onto High-Resolution Models ________________ 59
3.4 Pharmacogenomic Applications ____________________________ 60
3.4.1 A Challenging Application: the GPCRs ___________________ 60
3.4.2 Family-Wide Docking _____________________________ 60
3.4.3 Side Effect Predictions _______________________________ 61
3.4.4 Drug Metabolization Predictions ________________________ 61
4 Conclusions __ 62
References ___ 63
Structure Determination of Macromolecular Complexes by Experiment and Computation

F. Alber, N. Eswar, A. Sali

1. Introduction 73
2. Hybrid Approaches to Determination of Assembly Structures 77
 2.1 Modeling the Low-Resolution Structures of Assemblies 78
 2.1.1 Representation of Molecular Assemblies 80
 2.1.2 Scoring Function Consisting of Individual Spatial Restraints 80
 2.1.3 Optimization of the Scoring Function 81
 2.1.4 Analysis of the Models 81
3. Comparative Modeling for Structure Determination of Macromolecular Complexes 82
 3.1 Automated Comparative Protein Structure Modeling 82
 3.2 Accuracy of Comparative Models 84
 3.3 Prediction of Model Accuracy 86
 3.4 Docking of Comparative Models into Low-Resolution Cryo-EM Maps 86
 3.5 Example 1: A Partial Molecular Model of the 80S Ribosome from *Saccharomyces cerevisiae* 88
 3.6 Example 2: A Molecular Model of the *E. coli* 70S Ribosome 90
4. Conclusions 91

Modeling Protein Folding Pathways

C. Bystroff, Y. Shao

1. Introduction: Darwin Versus Boltzmann 95
1.1 Protein Folding Pathway History 98
2. Knowledge-Based Models for Folding Pathways 99
 2.1 I-sites: A Library of Folding Initiation Site Motifs 99
 2.2 HMMSTR: A Hidden Markov Model for Grammatical Structure 100
3. ROSETTA: Folding Simulations Using a Fragment Library 101
 3.1 Results of Fully Automated I-SITES/ROSETTA Simulations 102
 3.1.1 Summary .. 102
 3.1.2 Topologically Correct Large Fragment Predictions Are Found 103
 3.1.3 Good Local Structure Correlates Weakly with Good Tertiary Structure .. 104
3.1.4 Average Contact Order Is Too Low 105
3.1.5 How Could Automated ROSETTA Be Improved? 105
4 HMMSTR-CM: Folding Pathways Using Contact Maps 106
4.1 A Knowledge-Based Potential for Motif–Motif Interactions 106
4.2 Fold Recognition Using Contact Potential Maps 108
4.3 Consensus and Composite Contact Map Predictions 111
4.4 Ab Initio Rule-Based Pathway Predictions 111
4.5 Selected Results of HMMSTR-CM Blind Structure Predictions 112
 4.5.1 A Prediction Using Templates and a Pathway 113
 4.5.2 A Prediction Using Several Templates 113
 4.5.3 Correct Prediction Using Only the Folding Pathway 114
 4.5.4 False Prediction Using the Folding Pathway. What Went Wrong? 116
4.6 Future Directions for HMMTR-CM 117
5 Conclusions ... 118
References .. 118

Structural Bioinformatics and NMR Structure Determination 123
J.P. Linge, M. Nilges

1 Introduction: NMR and Structural Bioinformatics 123
2 Algorithms for NMR Structure Calculation 124
 2.1 Distance Geometry and Data Consistency 124
 2.2 Nonlinear Optimization 125
 2.3 Sampling Conformational Space 126
 2.4 Modelling Structures with Limited Data Sets 126
3 Internal Dynamics and NMR Structure Determination 127
 3.1 Calculating NMR Parameters from Molecular Dynamics Simulations 127
 3.2 Inferring Dynamics from NMR Data 127
4 Structure Validation .. 128
5 Structural Genomics by NMR 129
 5.1 Automated Assignment and Data Analysis 129
 5.2 Collaborative Computing Project for NMR (CCPN) 130
 5.3 SPINS .. 132
6 Databanks and Databases .. 132
 6.1 BioMagResBank and PDB/RCSB 133
7 Conclusions ... 133
References .. 134
Predicting Functional Residues in DNA Glycosylases
by Analysis of Structure and Conservation

D.O. Zharkov

1 Introduction
2 Generating Predictions: Sequence Selection and Analysis
3 Testing the Predictions: Mutational Analysis of Residues Defining Substrate Specificity in Formamidopyrimidine-DNA Glycosylase
4 Refining the Predictions: Analysis of Substrate Specificity in the Endonuclease III Family

References

Subject Index
Practical Bioinformatics
Bujnicki, J.M. (Ed.)
2004, XVII, 265 p., Hardcover
ISBN: 978-3-540-20613-2