1.4.4 SL₂-Equivalence 53
1.4.5 Periodic Continued Fractions and Pell’s Equation 53
1.5 Diophantine Approximation and the Irrationality 55
1.5.1 Ideas in the Proof that \(\zeta(3) \) is Irrational 55
1.5.2 The Measure of Irrationality of a Number 56
1.5.3 The Thue–Siegel–Roth Theorem, Transcendental Numbers, and Diophantine Equations 57
1.5.4 Proofs of the Identities (1.5.1) and (1.5.2) 58
1.5.5 The Recurrent Sequences \(a_n \) and \(b_n \) 59
1.5.6 Transcendental Numbers and the Seventh Hilbert Problem ... 61
1.5.7 Work of Yu.V. Nesterenko on \(e^\pi \), [Nes99] 61

2 Some Applications of Elementary Number Theory 63
2.1 Factorization and Public Key Cryptosystems 63
2.1.1 Factorization is Time-Consuming 63
2.1.2 One-Way Functions and Public Key Encryption 63
2.1.3 A Public Key Cryptosystem 64
2.1.4 Statistics and Mass Production of Primes 66
2.1.5 Probabilistic Primality Tests 66
2.1.6 The Discrete Logarithm Problem and The Diffie-Hellman Key Exchange Protocol 67
2.1.7 Computing of the Discrete Logarithm on Elliptic Curves over Finite Fields (ECDLP) 68
2.2 Deterministic Primality Tests 69
2.2.1 Adleman–Pomerance–Rumely Primality Test: Basic Ideas ... 69
2.2.2 Gauss Sums and Their Use in Primality Testing 71
2.2.3 Detailed Description of the Primality Test 75
2.2.4 Primes is in P 78
2.2.5 The algorithm of M. Agrawal, N. Kayal and N. Saxena . 81
2.2.6 Practical and Theoretical Primality Proving. The ECPP (Elliptic Curve Primality Proving by F. Morain, see [AtMo93b]) ... 81
2.2.7 Primes in Arithmetic Progression 82

2.3 Factorization of Large Integers 84
2.3.1 Comparative Difficulty of Primality Testing and Factorization ... 84
2.3.2 Factorization and Quadratic Forms 84
2.3.3 The Probabilistic Algorithm CLASNO 85
2.3.4 The Continued Fractions Method (CFRAC) and Real Quadratic Fields 87
2.3.5 The Use of Elliptic Curves 90
Part II Ideas and Theories

3 Induction and Recursion ... 95
 3.1 Elementary Number Theory From the Point of View of Logic . 95
 3.1.1 Elementary Number Theory 95
 3.1.2 Logic .. 96
 3.2 Diophantine Sets .. 98
 3.2.1 Enumerability and Diophantine Sets 98
 3.2.2 Diophantineness of enumerable sets 98
 3.2.3 First properties of Diophantine sets 98
 3.2.4 Diophantineness and Pell’s Equation 99
 3.2.5 The Graph of the Exponent is Diophantine 100
 3.2.6 Diophantineness and Binomial coefficients 100
 3.2.7 Binomial coefficients as remainders 101
 3.2.8 Diophantineness of the Factorial 101
 3.2.9 Factorial and Euclidean Division 101
 3.2.10 Supplementary Results 102
 3.3 Partially Recursive Functions and Enumerable Sets 103
 3.3.1 Partial Functions and Computable Functions 103
 3.3.2 The Simple Functions 103
 3.3.3 Elementary Operations on Partial functions 103
 3.3.4 Partially Recursive Description of a Function 104
 3.3.5 Other Recursive Functions 106
 3.3.6 Further Properties of Recursive Functions 108
 3.3.7 Link with Level Sets 108
 3.3.8 Link with Projections of Level Sets 108
 3.3.9 Matiyasevich’s Theorem 109
 3.3.10 The existence of certain bijections 109
 3.3.11 Operations on primitively enumerable sets 111
 3.3.12 Gödel’s function 111
 3.3.13 Discussion of the Properties of Enumerable Sets .. 112
 3.4 Diophantineness of a Set and algorithmic Undecidability 113
 3.4.1 Algorithmic undecidability and unsolvability 113
 3.4.2 Sketch Proof of the Matiyasevich Theorem 113

4 Arithmetic of algebraic numbers 115
 4.1 Algebraic Numbers: Their Realizations and Geometry 115
 4.1.1 Adjoining Roots of Polynomials 115
 4.1.2 Galois Extensions and Frobenius Elements 117
 4.1.3 Tensor Products of Fields and Geometric Realizations of Algebraic Numbers 119
 4.1.4 Units, the Logarithmic Map, and the Regulator 121
 4.1.5 Lattice Points in a Convex Body 123
4.1.6 Deduction of Dirichlet’s Theorem From Minkowski’s Lemma ... 125

4.2 Decomposition of Prime Ideals, Dedekind Domains, and Valuations ... 126
 4.2.1 Prime Ideals and the Unique Factorization Property 126
 4.2.2 Finiteness of the Class Number ... 128
 4.2.3 Decomposition of Prime Ideals in Extensions 129
 4.2.4 Decomposition of primes in cyclotomic fields 131
 4.2.5 Prime Ideals, Valuations and Absolute Values 132

4.3 Local and Global Methods ... 134
 4.3.1 p–adic Numbers .. 134
 4.3.2 Applications of p–adic Numbers to Solving Congruences 138
 4.3.3 The Hilbert Symbol ... 139
 4.3.4 Algebraic Extensions of \mathbb{Q}_p, and the Tate Field 142
 4.3.5 Normalized Absolute Values .. 143
 4.3.6 Places of Number Fields and the Product Formula 145
 4.3.7 Adeles and Ideles .. 146
 The Ring of Adeles ... 146
 The Idele Group ... 149
 4.3.8 The Geometry of Adeles and Ideles 149

4.4 Class Field Theory .. 155
 4.4.1 Abelian Extensions of the Field of Rational Numbers 155
 4.4.2 Frobenius Automorphisms of Number Fields and Artin’s Reciprocity Map .. 157
 4.4.3 The Chebotarev Density Theorem 159
 4.4.4 The Decomposition Law and the Artin Reciprocity Map 159
 4.4.5 The Kernel of the Reciprocity Map 160
 4.4.6 The Artin Symbol ... 161
 4.4.7 Global Properties of the Artin Symbol 162
 4.4.8 A Link Between the Artin Symbol and Local Symbols 163
 4.4.9 Properties of the Local Symbol 164
 4.4.10 An Explicit Construction of Abelian Extensions of a Local Field, and a Calculation of the Local Symbol 165
 4.4.11 Abelian Extensions of Number Fields 168

4.5 Galois Group in Arithmetical Problems 172
 4.5.1 Dividing a circle into n equal parts 172
 4.5.2 Kummer Extensions and the Power Residue Symbol 175
 4.5.3 Galois Cohomology .. 178
 4.5.4 A Cohomological Definition of the Local Symbol 182
 4.5.5 The Brauer Group, the Reciprocity Law and the Minkowski–Hasse Principle ... 184
5 Arithmetic of algebraic varieties ... 191
 5.1 Arithmetic Varieties and Basic Notions of Algebraic Geometry 191
 5.1.1 Equations and Rings ... 191
 5.1.2 The set of solutions of a system 191
 5.1.3 Example: The Language of Congruences 192
 5.1.4 Equivalence of Systems of Equations 192
 5.1.5 Solutions as K-algebra Homomorphisms 192
 5.1.6 The Spectrum of A Ring 193
 5.1.7 Regular Functions .. 193
 5.1.8 A Topology on Spec(A) 193
 5.1.9 Schemes ... 196
 5.1.10 Ring-Valued Points of Schemes 197
 5.1.11 Solutions to Equations and Points of Schemes 198
 5.1.12 Chevalley’s Theorem 199
 5.1.13 Some Geometric Notions 199
 5.2 Geometric Notions in the Study of Diophantine equations 202
 5.2.1 Basic Questions ... 202
 5.2.2 Geometric classification 203
 5.2.3 Existence of Rational Points and Obstructions to the
 Hasse Principle .. 204
 5.2.4 Finite and Infinite Sets of Solutions 206
 5.2.5 Number of points of bounded height 208
 5.2.6 Height and Arakelov Geometry211
 5.3 Elliptic curves, Abelian Varieties, and Linear Groups 213
 5.3.1 Algebraic Curves and Riemann Surfaces 213
 5.3.2 Elliptic Curves .. 213
 5.3.3 Tate Curve and Its Points of Finite Order 219
 5.3.4 The Mordell – Weil Theorem and Galois Cohomology 221
 5.3.5 Abelian Varieties and Jacobians 226
 5.3.6 The Jacobian of an Algebraic Curve 228
 5.3.7 Siegel’s Formula and Tamagawa Measure 231
 5.4 Diophantine Equations and Galois Representations 238
 5.4.1 The Tate Module of an Elliptic Curve 238
 5.4.2 The Theory of Complex Multiplication 240
 5.4.3 Characters of l-adic Representations 242
 5.4.4 Representations in Positive Characteristic 243
 5.4.5 The Tate Module of a Number Field 244
 5.5 The Theorem of Faltings and Finiteness Problems in
 Diophantine Geometry .. 247
 5.5.1 Reduction of the Mordell Conjecture to the finiteness
 Conjecture .. 247
 5.5.2 The Theorem of Shafarevich on Finiteness for Elliptic
 Curves .. 249
 5.5.3 Passage to Abelian varieties250
 5.5.4 Finiteness Problems and Tate’s Conjecture 252
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.5</td>
<td>Reduction of the conjectures of Tate to the finiteness properties for isogenies</td>
<td>253</td>
</tr>
<tr>
<td>5.5.6</td>
<td>The Faltings–Arakelov Height</td>
<td>255</td>
</tr>
<tr>
<td>5.5.7</td>
<td>Heights under isogenies and Conjecture T</td>
<td>257</td>
</tr>
<tr>
<td>6</td>
<td>Zeta Functions and Modular Forms</td>
<td>261</td>
</tr>
<tr>
<td>6.1</td>
<td>Zeta Functions of Arithmetic Schemes</td>
<td>261</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Zeta Functions of Arithmetic Schemes</td>
<td>261</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Analytic Continuation of the Zeta Functions</td>
<td>263</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Schemes over Finite Fields and Deligne’s Theorem</td>
<td>263</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Zeta Functions and Exponential Sums</td>
<td>267</td>
</tr>
<tr>
<td>6.2</td>
<td>L-Functions, the Theory of Tate and Explicit Formulae</td>
<td>272</td>
</tr>
<tr>
<td>6.2.1</td>
<td>L-Functions of Rational Galois Representations</td>
<td>272</td>
</tr>
<tr>
<td>6.2.2</td>
<td>The Formalism of Artin</td>
<td>274</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Example: The Dedekind Zeta Function</td>
<td>276</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Hecke Characters and the Theory of Tate</td>
<td>278</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Explicit Formulae</td>
<td>285</td>
</tr>
<tr>
<td>6.2.6</td>
<td>The Weil Group and its Representations</td>
<td>288</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Zeta Functions, L-Functions and Motives</td>
<td>290</td>
</tr>
<tr>
<td>6.3</td>
<td>Modular Forms and Euler Products</td>
<td>296</td>
</tr>
<tr>
<td>6.3.1</td>
<td>A Link Between Algebraic Varieties and L-Functions</td>
<td>296</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Classical modular forms</td>
<td>296</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Application: Tate Curve and Semistable Elliptic Curves</td>
<td>299</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Analytic families of elliptic curves and congruence subgroups</td>
<td>301</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Modular forms for congruence subgroups</td>
<td>302</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Hecke Theory</td>
<td>304</td>
</tr>
<tr>
<td>6.3.7</td>
<td>Primitive Forms</td>
<td>310</td>
</tr>
<tr>
<td>6.3.8</td>
<td>Weil’s Inverse Theorem</td>
<td>312</td>
</tr>
<tr>
<td>6.4</td>
<td>Modular Forms and Galois Representations</td>
<td>317</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Ramanujan’s congruence and Galois Representations</td>
<td>317</td>
</tr>
<tr>
<td>6.4.2</td>
<td>A Link with Eichler–Shimura’s Construction</td>
<td>319</td>
</tr>
<tr>
<td>6.4.3</td>
<td>The Shimura–Taniyama–Weil Conjecture</td>
<td>320</td>
</tr>
<tr>
<td>6.4.4</td>
<td>The Conjecture of Birch and Swinnerton–Dyer</td>
<td>321</td>
</tr>
<tr>
<td>6.4.5</td>
<td>The Artin Conjecture and Cusp Forms</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>The Artin conductor</td>
<td>329</td>
</tr>
<tr>
<td>6.4.6</td>
<td>Modular Representations over Finite Fields</td>
<td>330</td>
</tr>
<tr>
<td>6.5</td>
<td>Automorphic Forms and The Langlands Program</td>
<td>332</td>
</tr>
<tr>
<td>6.5.1</td>
<td>A Relation Between Classical Modular Forms and Representation Theory</td>
<td>332</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Automorphic L-Functions</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>Further analytic properties of automorphic L-functions</td>
<td>338</td>
</tr>
<tr>
<td>6.5.3</td>
<td>The Langlands Functoriality Principle</td>
<td>338</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Automorphic Forms and Langlands Conjectures</td>
<td>339</td>
</tr>
</tbody>
</table>
Fermat’s Last Theorem and Families of Modular Forms

7.1 Shimura–Taniyama–Weil Conjecture and Reciprocity Laws

- Problem of Pierre de Fermat (1601–1665) 341
- G. Lamé’s Mistake .. 342
- A short overview of Wiles’ Marvelous Proof 343
- The STW Conjecture ... 344
- A connection with the Quadratic Reciprocity Law 345
- A complete proof of the STW conjecture 345
- Modularity of semistable elliptic curves 348
- Structure of the proof of theorem 7.13 (Semistable STW Conjecture) ... 349

7.2 Theorem of Langlands-Tunnell and Modularity Modulo 3

- Galois representations: preparation 352
- Modularity modulo \(p \) .. 354
- Passage from cusp forms of weight one to cusp forms
 of weight two ... 355
- Preliminary review of the stages of the proof of
 Theorem 7.13 on modularity .. 356

7.3 Modularity of Galois representations and Universal Deformation Rings

- Galois Representations over local Noetherian algebras ... 357
- Deformations of Galois Representations 357
- Modular Galois representations 359
- Admissible Deformations and Modular Deformations ... 361
- Universal Deformation Rings 363

7.4 Wiles’ Main Theorem and Isomorphism Criteria for Local Rings

- Strategy of the proof of the Main Theorem 7.33 365
- Surjectivity of \(\varphi_{\Sigma} \) 365
- Constructions of the universal deformation ring \(R_{\Sigma} \) 367
- A sketch of a construction of the universal modular
deformation ring \(T_{\Sigma} \) ... 368
- Universality and the Chebotarev density theorem 369
- Isomorphism Criteria for local rings 370
- \(J \)-structures and the second criterion of isomorphism
 of local rings .. 371

7.5 Wiles’ Induction Step: Application of the Criteria and Galois Cohomology

- Wiles’ induction step in the proof of
 Main Theorem 7.33 ... 373
- A formula relating \(\#\Phi_{R_{\Sigma}} \) and \(\#\Phi_{R_{\Sigma}'} \): preparation 374
- The Selmer group and \(\Phi_{R_{\Sigma}} \) 375
- Infinitesimal deformations .. 375
- Deformations of type \(D_{\Sigma} \) 377
7.6 The Relative Invariant, the Main Inequality and The Minimal Case ... 382
7.6.1 The Relative invariant .. 382
7.6.2 The Main Inequality .. 383
7.6.3 The Minimal Case ... 386
7.7 End of Wiles’ Proof and Theorem on Absolute Irreducibility . 388
7.7.1 Theorem on Absolute Irreducibility 388
7.7.2 From $p = 3$ to $p = 5$.. 390
7.7.3 Families of elliptic curves with fixed $\rho_{5,E}$ 391
7.7.4 The end of the proof .. 392

The most important insights. .. 393

Part III Analogies and Visions

III-0 Introductory survey to part III: motivations and description ... 397
III.1 Analogies and differences between numbers and functions:
 ∞-point, Archimedean properties etc. 397
 III.1.1 Cauchy residue formula and the product formula 397
 III.1.2 Arithmetic varieties .. 398
 III.1.3 Infinitesimal neighborhoods of fibers 398
III.2 Arakelov geometry, fiber over ∞, cycles, Green functions
 (d’après Gillet-Soulé) ... 399
 III.2.1 Arithmetic Chow groups 400
 III.2.2 Arithmetic intersection theory and arithmetic
 Riemann-Roch theorem .. 401
III.2.3 Geometric description of the closed fibers at infinity .. 402
III.3 ζ-functions, local factors at ∞, Serre’s Γ-factors .. 404
 III.3.1 Archimedean L-factors 405
 III.3.2 Deninger’s formulae .. 406
III.4 A guess that the missing geometric objects are
 noncommutative spaces ... 407
 III.4.1 Types and examples of noncommutative spaces, and
 how to work with them. Noncommutative geometry
 and arithmetic ... 407
 Isomorphism of noncommutative spaces and Morita
 equivalence .. 409
 The tools of noncommutative geometry 410
III.4.2 Generalities on spectral triples 411
III.4.3 Contents of Part III: description of parts of this program 412
8 Arakelov Geometry and Noncommutative Geometry 415

8.1 Schottky Uniformization and Arakelov Geometry 415

8.1.1 Motivations and the context of the work of Consani-Marcolli 415

8.1.2 Analytic construction of degenerating curves over complete local fields 416

8.1.3 Schottky groups and new perspectives in Arakelov geometry 420

Schottky uniformization and Schottky groups 421

Fuchsian and Schottky uniformization 424

8.1.4 Hyperbolic handlebodies 425

Geodesics in X_{Γ} 427

8.1.5 Arakelov geometry and hyperbolic geometry 427

Arakelov Green function 427

Cross ratio and geodesics 428

Differentials and Schottky uniformization 428

Green function and geodesics 430

8.2 Cohomological Constructions 431

8.2.1 Archimedean cohomology 431

Operators .. 433

SL(2, \mathbb{R}) representations 434

8.2.2 Local factor and Archimedean cohomology 435

8.2.3 Cohomological constructions 436

8.2.4 Zeta function of the special fiber and Reidemeister torsion 437

8.3 Spectral Triples, Dynamics and Zeta Functions 440

8.3.1 A dynamical theory at infinity 442

8.3.2 Homotopy quotient 443

8.3.3 Filtration 444

8.3.4 Hilbert space and grading 446

8.3.5 Cuntz–Krieger algebra 446

Spectral triples for Schottky groups 448

8.3.6 Arithmetic surfaces: homology and cohomology 449

8.3.7 Archimedean factors from dynamics 450

8.3.8 A Dynamical theory for Mumford curves 451

Genus two example 452

8.3.9 Cohomology of $W(\Delta/\Gamma)_T$ 454

8.3.10 Spectral triples and Mumford curves 456

8.4 Reduction mod ∞ 458

8.4.1 Homotopy quotients and “reduction mod infinity” 458

8.4.2 Baum-Connes map 460

References .. 461

Index ... 503
Introduction to Modern Number Theory
Fundamental Problems, Ideas and Theories
Manin, Y.I.; Panchishkin, A.A.
2005, XVI, 514 p., Hardcover
ISBN: 978-3-540-20364-3