Table of Contents

Introduction ... 1

Historical Note ... 1

The Contents of the Book 8

Standard Notation .. 12

I. Preliminaries .. 13

Topology and Algebra 13

1. Notation and Basic Facts 13
2. Some Properties of Bilinear Forms 15
3. Vector Bundles, Characteristic Classes and the Index Theorem 21

Complex Manifolds ... 23

4. Basic Concepts and Facts 23
5. Holomorphic Vector Bundles, Serre Duality and Riemann-Roch 24
6. Line Bundles and Divisors 26
7. Algebraic Dimension and Kodaira Dimension 28

General Analytic Geometry 30

8. Complex Spaces ... 30
9. The σ-Process 34
10. Deformations of Complex Manifolds 35

Differential Geometry of Complex Manifolds 39

11. De Rham Cohomology 39
12. Dolbeault Cohomology 41
13. Kähler Manifolds .. 42
14. Weight-1 Hodge Structures 48
15. Yau's Results on Kähler-Einstein Metrics 51

Coverings ... 53

16. Ramification ... 53
17. Cyclic Coverings .. 54
18. Covering Tricks ... 55

Projective-Algebraic Varieties 57

19. GAGA Theorems and Projectivity Criteria 57
20. Theorems of Bertini and Lefschetz 58

II. Curves on Surfaces 61

Embedded Curves .. 61

1. Some Standard Exact Sequences 61
2. The Picard-Group of an Embedded Curve 63
3. Riemann-Roch for an Embedded Curve 65
4. The Residue Theorem 66
5. The Trace Map .. 68
6. Serre Duality on an Embedded Curve ... 70
7. The σ-process .. 73
8. Simple Singularities of Curves ... 78

Intersection Theory ... 81

9. Intersection Multiplicities ... 81
10. Intersection Numbers ... 83
11. The Arithmetical Genus of an Embedded Curve 84
12. 1-Connected Divisors .. 85

III. Mappings of Surfaces .. 89

Bimeromorphic Geometry .. 89
1. Bimeromorphic Maps .. 89
2. Exceptional Curves ... 90
3. Rational Singularities .. 93
4. Exceptional Curves of the First Kind .. 97
5. Hirzebruch-Jung Singularities .. 99
6. Resolution of Surface Singularities .. 105
7. Singularities of Double Coverings, Simple Singularities of Surfaces 107

Fibrations of Surfaces ... 110
8. Generalities on Fibrations .. 110
9. The n-th Root Fibration .. 113
10. Stable Fibrations .. 114
11. Direct Image Sheaves ... 116
12. Relative Duality ... 118

The Period Map of Stable Fibrations ... 121
13. Period Matrices of Stable Curves ... 121
14. Topological Monodromy of Stable Fibrations 122
15. Monodromy of the Period Matrix ... 125
16. Extending the Period Map ... 127
17. The Degree of $f_*\omega_{X/S}$.. 129
18. Iitaka's Conjecture $C_{2,1}$.. 131

IV. Some General Properties of Surfaces 135

1. Meromorphic Maps, Associated to Line Bundles 135
2. Hodge Theory on Surfaces ... 137
3. Existence of Kähler Metrics .. 144
4. Deformations of Surfaces .. 154
5. Some Inequalities for Hodge Numbers 157
6. Projectivity of Surfaces .. 159
7. The Nef Cone ... 162
8. Surfaces of Algebraic Dimension Zero 165
9. Almost-Complex Surfaces without any Complex Structure 166
10. Bogomolov's Theorem .. 168
11. Reider's Method .. 174
12. Vanishing Theorems on Surfaces .. 179

V. Examples ... 185

Some Classical Examples ... 185
1. The Projective Plane \mathbb{P}_2 ... 185
2. Complete Intersections .. 187
3. Tori of Dimension 2 .. 188

Fibre Bundles ... 189
4. Ruled Surfaces ... 189
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Elliptic Fibre Bundles</td>
<td>193</td>
</tr>
<tr>
<td>6</td>
<td>Higher Genus Fibre Bundles</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Elliptic Fibrations</td>
<td>200</td>
</tr>
<tr>
<td>7</td>
<td>Kodaira’s Table of Singular Fibres</td>
<td>200</td>
</tr>
<tr>
<td>8</td>
<td>Stable Fibrations</td>
<td>202</td>
</tr>
<tr>
<td>9</td>
<td>The Jacobian Fibration</td>
<td>204</td>
</tr>
<tr>
<td>10</td>
<td>Stable Reduction</td>
<td>207</td>
</tr>
<tr>
<td>11</td>
<td>Classification</td>
<td>211</td>
</tr>
<tr>
<td>12</td>
<td>Invariants</td>
<td>212</td>
</tr>
<tr>
<td>13</td>
<td>Logarithmic Transformations</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>Kodaira Fibrations</td>
<td>220</td>
</tr>
<tr>
<td>14</td>
<td>Finite Quotients</td>
<td>223</td>
</tr>
<tr>
<td>15</td>
<td>The Godeaux Surface</td>
<td>223</td>
</tr>
<tr>
<td>16</td>
<td>Kummer Surfaces</td>
<td>223</td>
</tr>
<tr>
<td>17</td>
<td>Quotients of Products of Curves</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Infinite Quotients</td>
<td>225</td>
</tr>
<tr>
<td>18</td>
<td>Hopf Surfaces</td>
<td>225</td>
</tr>
<tr>
<td>19</td>
<td>Inoue Surfaces</td>
<td>227</td>
</tr>
<tr>
<td>20</td>
<td>Quotients of Bounded Domains in \mathbb{C}^2</td>
<td>230</td>
</tr>
<tr>
<td>21</td>
<td>Hilbert Modular Surfaces</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Coverings</td>
<td>236</td>
</tr>
<tr>
<td>22</td>
<td>Invariants of Double Coverings</td>
<td>236</td>
</tr>
<tr>
<td>23</td>
<td>An Enriques Surface</td>
<td>238</td>
</tr>
<tr>
<td>24</td>
<td>Kummer Coverings</td>
<td>240</td>
</tr>
</tbody>
</table>

VI. The Enriques Kodaira Classification

1. Statement of the Main Result 243
2. Characterising Minimal Surfaces whose Canonical Bundle is Nef 247
3. The Rationality Theorem and Castelnuovo’s Criterion 248
4. The Case $a(X) = 2$. 252
5. The Case $a(X) = 1$. 255
6. The Case $a(X) = 0$. 257
7. The Final Step 262
8. Deformations 263

VII. Surfaces of General Type

Preliminaries 269
1. Introduction 269
2. Some General Theorems 271

Two Inequalities 273
3. Noether’s Inequality 273
4. The Inequality $c_1^2 \leq 3c_2$ 275

Pluricanonical Maps 279
5. The Main Results 279
6. Proof of the Main Results 281
7. The Exceptional Cases and the 1-Canonical Map 286

Surfaces with Given Chern Numbers 290
8. The Geography of Chern Numbers 291
9. Surfaces on the Noether Lines 296
10. Surfaces with $q = p_g = 0$ 299
VIII. K3-Surfaces and Enriques Surfaces 307

Introduction ... 307
1. Notation ... 307
2. The Results ... 309

K3-Surfaces .. 310
3. Topological and Analytical Invariants 310
4. Digression on Affine Geometry over \mathbb{F}_2 314
5. The Néron-Severi Lattice of Kummer Surfaces 316
6. The Torelli Theorem for Kummer Surfaces 323
7. The Local Torelli Theorem for K3-Surfaces 324
8. A Density Theorem ... 326
9. Behaviour of the Kähler Cone under Deformations 328
10. Degenerations of Isomorphisms between K3-Surfaces 330
11. The Torelli Theorems for K3-Surfaces 333
12. Construction of Moduli Spaces 335
13. Digression on Quaternionic Structures 337
14. Surjectivity of the Period Map 339

Enriques Surfaces .. 340
15. Topological and Analytic Invariants 340
16. Divisors on an Enriques Surface Y 341
17. Elliptic Pencils .. 343
18. Double Coverings of Quadrics 346
19. The Period Map .. 351
20. The Period Domain for Enriques Surfaces 353
21. Global Properties of the Period Map 355

Special Topics ... 359
22. Projective K3-surfaces and Mirror Symmetry 359
23. Special Curves on K3-Surfaces 365

IX. Topological and Differentiable Structure of Surfaces 375

Topology of Simply Connected Compact Complex Surfaces 375
1. Freedman’s Results .. 375
2. Representability of Unimodular Forms 377

Donaldson Invariants .. 379
3. Introduction ... 379
4. The Donaldson Invariant, a Bird’s Eye View 380
5. Infinitely many Homeomorphic Surfaces which are not Diffeomorphic 383
6. Further Results obtained by the Donaldson Method 390

Seiberg-Witten Invariants .. 391
7. Introduction ... 391
8. Properties of the Invariants .. 393
9. Surfaces Diffeomorphic to a Rational Surface 395

Bibliography .. 401

Notation ... 425

Index .. 429
Compact Complex Surfaces
Barth, W.; Hulek, K.; Peters, C.; Ven, A. van de
2004, XII, 436 p., Hardcover
ISBN: 978-3-540-00832-3