Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Introduction: What is This Book About</td>
<td>1</td>
</tr>
<tr>
<td>0.1</td>
<td>New Life of an Old Theory</td>
<td>1</td>
</tr>
<tr>
<td>0.2</td>
<td>Plan of the Book</td>
<td>2</td>
</tr>
<tr>
<td>0.3</td>
<td>What You Will Not Find in this Book</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>Constellations, Coverings, and Maps</td>
<td>7</td>
</tr>
<tr>
<td>1.1</td>
<td>Constellations</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Ramified Coverings of the Sphere</td>
<td>13</td>
</tr>
<tr>
<td>1.2.1</td>
<td>First Definitions</td>
<td>13</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Coverings and Fundamental Groups</td>
<td>15</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Ramified Coverings of the Sphere and Constellations</td>
<td>18</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Surfaces</td>
<td>22</td>
</tr>
<tr>
<td>1.3</td>
<td>Maps</td>
<td>26</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Graphs Versus Maps</td>
<td>26</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Maps: Topological Definition</td>
<td>28</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Maps: Permutational Model</td>
<td>33</td>
</tr>
<tr>
<td>1.4</td>
<td>Cartographic Groups</td>
<td>39</td>
</tr>
<tr>
<td>1.5</td>
<td>Hypermaps</td>
<td>43</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Hypermaps and Bipartite Maps</td>
<td>43</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Trees</td>
<td>45</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Appendix: Finite Linear Groups</td>
<td>49</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Canonical Triangulation</td>
<td>50</td>
</tr>
<tr>
<td>1.6</td>
<td>More Than Three Permutations</td>
<td>55</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Preimages of a Star or of a Polygon</td>
<td>56</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Cacti</td>
<td>57</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Preimages of a Jordan Curve</td>
<td>61</td>
</tr>
<tr>
<td>1.7</td>
<td>Further Discussion</td>
<td>63</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Coverings of Surfaces of Higher Genera</td>
<td>63</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Ritt’s Theorem</td>
<td>65</td>
</tr>
<tr>
<td>1.7.3</td>
<td>Symmetric and Regular Constellations</td>
<td>68</td>
</tr>
<tr>
<td>1.8</td>
<td>Review of Riemann Surfaces</td>
<td>70</td>
</tr>
</tbody>
</table>
2 Dessins d’Enfants ... 79
 2.1 Introduction: The Belyi Theorem 79
 2.2 Plane Trees and Shabat Polynomials 80
 2.2.1 General Theory Applied to Trees 80
 2.2.2 Simple Examples ... 88
 2.2.3 Further Discussion ... 94
 2.2.4 More Advanced Examples 101
 2.3 Belyi Functions and Belyi Pairs 109
 2.4 Galois Action and Its Combinatorial Invariants 115
 2.4.1 Preliminaries ... 115
 2.4.2 Galois Invariants .. 118
 2.4.3 Two Theorems on Trees 123
 2.5 Several Facets of Belyi Functions 126
 2.5.1 A Bound of Davenport–Stothers–Zannier 126
 2.5.2 Jacobi Polynomials ... 131
 2.5.3 Fermat Curve .. 135
 2.5.4 The abc Conjecture ... 137
 2.5.5 Julia Sets .. 139
 2.5.6 Pell Equation for Polynomials 142
 2.6 Proof of the Belyi Theorem 146
 2.6.1 The “Only If” Part of the Belyi Theorem 146
 2.6.2 Comments to the Proof of the “Only If” Part 147
 2.6.3 The “If”, or the “Obvious” Part of the Belyi Theorem ... 150

3 Introduction to the Matrix Integrals Method 155
 3.1 Model Problem: One-Face Maps 155
 3.2 Gaussian Integrals ... 160
 3.2.1 The Gaussian Measure on the Line 160
 3.2.2 Gaussian Measures in \mathbb{R}^k 162
 3.2.3 Integrals of Polynomials and the Wick Formula 163
 3.2.4 A Gaussian Measure on the Space of Hermitian Matrices 164
 3.2.5 Matrix Integrals and Polygon Gluings 167
 3.2.6 Computing Gaussian Integrals. Unitary Invariance 171
 3.2.7 Computation of the Integral for One Face Gluings 176
 3.3 Matrix Integrals for Multi-Faced Maps 179
 3.3.1 Feynman Diagrams .. 179
 3.3.2 The Matrix Integral for an Arbitrary Gluing 180
 3.3.3 Getting Rid of Disconnected Graphs 183
 3.4 Enumeration of Colored Graphs 185
 3.4.1 Two-Matrix Integrals and the Ising Model 185
 3.4.2 The Gauss Problem .. 188
 3.4.3 Meanders .. 190
 3.4.4 On Enumeration of Meanders 191
 3.5 Computation of Matrix Integrals 192
5.1.3 Proof of the Lyashko–Looijenga Theorem 273
5.2 Rigid Classification of Nongeneric Polynomials
 and the Geometry of the Discriminant 277
 5.2.1 The Discriminant in the Space of Polynomials
 and Its Stratification 277
 5.2.2 Statement of the Enumeration Theorem 279
 5.2.3 Primitive Strata 280
 5.2.4 Proof of the Enumeration Theorem 282
5.3 Rigid Classification
 of Generic Meromorphic Functions
 and Geometry of Moduli Spaces of Curves 288
 5.3.1 Statement of the Enumeration Theorem 288
 5.3.2 Calculations: Genus 0 and Genus 1 289
 5.3.3 Cones and Their Segre Classes 292
 5.3.4 Cones of Principal Parts 294
 5.3.5 Hurwitz Spaces 297
 5.3.6 Completed Hurwitz Spaces and Stable Mappings 299
 5.3.7 Extending the LL Mapping
 to Completed Hurwitz Spaces 300
 5.3.8 Computing the Top Segre Class; End of the Proof 302
5.4 The Braid Group Action 304
 5.4.1 Braid Groups 304
 5.4.2 Braid Group Action on Cacti: Generalities 309
 5.4.3 Experimental Study 312
 5.4.4 Primitive and Imprimitive Monodromy Groups 318
 5.4.5 Perspectives 325
5.5 Megamaps 327
 5.5.1 Hurwitz Spaces of Coverings
 with Four Ramification Points 328
 5.5.2 Representation of \mathcal{H} as a Dessin d’Enfant 329
 5.5.3 Examples 331
6 Algebraic Structures Associated with Embedded Graphs 337
 6.1 The Bialgebra of Chord Diagrams 337
 6.1.1 Chord Diagrams and Arc Diagrams 337
 6.1.2 The 4-Term Relation 339
 6.1.3 Multiplying Chord Diagrams 342
 6.1.4 A Bialgebra Structure 343
 6.1.5 Structure Theorem for the Bialgebra \mathcal{M} 346
 6.1.6 Primitive Elements of the Bialgebra
 of Chord Diagrams 347
 6.2 Knot Invariants and Origins of Chord Diagrams 350
 6.2.1 Knot Invariants and their Extension to Singular Knots 350
 6.2.2 Invariants of Finite Order 353
 6.2.3 Deducing 1-Term and 4-Term Relations for Invariants 355
6.2.4 Chord Diagrams of Singular Links 357
6.3 Weight Systems ... 359
 6.3.1 A Bialgebra Structure on the Module V
 of Vassiliev Knot Invariants 359
 6.3.2 Renormalization ... 360
 6.3.3 Weight Systems .. 362
 6.3.4 Vassiliev Knot Invariants and Other Knot Invariants .. 364
6.4 Constructing Weight Systems via Intersection Graphs 367
 6.4.1 The Intersection Graph of a Chord Diagram 367
 6.4.2 Tutte Functions for Graphs 368
 6.4.3 The 4-Bialgebra of Graphs 369
 6.4.4 The Bialgebra of Weighted Graphs 379
 6.4.5 Constructing Vassiliev Invariants from 4-Invariants .. 383
6.5 Constructing Weight Systems via Lie Algebras 384
 6.5.1 Free Associative Algebras 385
 6.5.2 Universal Enveloping Algebras of Lie Algebras 387
 6.5.3 Examples .. 390
6.6 Some Other Algebras of Embedded Graphs 393
 6.6.1 Circle Diagrams and Open Diagrams 393
 6.6.2 The Algebra of 3-Graphs 395
 6.6.3 The Temperley–Lieb Algebra 395
A Applications of the Representation Theory
 of Finite Groups (by Don Zagier) 399
 A.1 Representation Theory of Finite Groups 399
 A.1.1 Irreducible Representations and Characters 399
 A.1.2 Examples .. 403
 A.1.3 Frobenius’s Formula 406
 A.2 Applications ... 408
 A.2.1 Representations of S_n and Canonical Polynomials
 Associated to Partitions 409
 A.2.2 Examples ... 415
 A.2.3 First Application: Enumeration of Polygon Gluings 416
 A.2.4 Second Application: the Goulden–Jackson Formula .. 418
 A.2.5 Third Application: “Mirror Symmetry”
 in Dimension One 423
References .. 429
Index ... 445
Graphs on Surfaces and Their Applications
Lando, S.K.; Zvonkin, A.K. - Gamkrelidze, R.V.; Vassiliev, V.A. (Eds.)
2004, XV, 455 p. 3 illus., Hardcover
ISBN: 978-3-540-00203-1