Contents

Part I Fourier Series and the Discrete Fourier Transform

1 Introduction ... 3
2 Formulation of Fourier Series 11
3 Fourier Coefficients and Their Properties 17
4 Convolution and Parseval’s Equality 23
5 Fejér Means of Fourier Series. Uniqueness of the Fourier Series . 27
6 The Riemann–Lebesgue Lemma 33
7 The Fourier Series of a Square-Integrable Function. The
 Riesz–Fischer Theorem. 37
8 Besov and Hölder Spaces 45
9 Absolute convergence. Bernstein and Peetre Theorems. .. 53
10 Dirichlet Kernel. Pointwise and Uniform Convergence. 59
11 Formulation of the Discrete Fourier Transform and Its Properties... 77
12 Connection Between the Discrete Fourier Transform
 and the Fourier Transform. 85
13 Some Applications of the Discrete Fourier Transform. 93
14 Applications to Solving Some Model Equations 99
 14.1 The One-Dimensional Heat Equation 99
 14.2 The One-Dimensional Wave Equation 113
 14.3 The Laplace Equation in a Rectangle and in a Disk .. 121
Part II Fourier Transform and Distributions

15 Introduction .. 131
16 The Fourier Transform in Schwartz Space 133
17 The Fourier Transform in $L^p(\mathbb{R}^n)$, $1 \leq p \leq 2$ 143
18 Tempered Distributions .. 153
19 Convolutions in \mathcal{S} and \mathcal{S}' 167
20 Sobolev spaces .. 175
20.1 Sobolev spaces on bounded domains 188
21 Homogeneous Distributions 193
22 Fundamental Solution of the Helmholtz Operator 207
23 Estimates for the Laplacian and Hamiltonian 217

Part III Operator Theory and Integral Equations

24 Introduction ... 247
25 Inner Product Spaces and Hilbert Spaces 249
26 Symmetric Operators in Hilbert Spaces 261
27 John von Neumann’s spectral theorem 279
28 Spectra of Self-Adjoint Operators 295
29 Quadratic Forms. Friedrichs Extension. 313
30 Elliptic Differential Operators 319
31 Spectral Functions .. 331
32 The Schrödinger Operator 335
33 The Magnetic Schrödinger Operator 349
34 Integral Operators with Weak Singularities. Integral Equations
 of the First and Second Kinds. 359
35 Volterra and Singular Integral Equations 371
36 Approximate Methods 379

Part IV Partial Differential Equations

37 Introduction .. 393
38 Local Existence Theory 405
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39 The Laplace Operator</td>
<td>421</td>
</tr>
<tr>
<td>40 The Dirichlet and Neumann Problems</td>
<td>437</td>
</tr>
<tr>
<td>41 Layer Potentials</td>
<td>451</td>
</tr>
<tr>
<td>42 Elliptic Boundary Value Problems</td>
<td>471</td>
</tr>
<tr>
<td>43 The Direct Scattering Problem for the Helmholtz Equation</td>
<td>485</td>
</tr>
<tr>
<td>44 Some Inverse Scattering Problems for the Schrödinger Operator</td>
<td>493</td>
</tr>
<tr>
<td>45 The Heat Operator</td>
<td>507</td>
</tr>
<tr>
<td>46 The Wave Operator</td>
<td>517</td>
</tr>
<tr>
<td>References</td>
<td>529</td>
</tr>
<tr>
<td>Index</td>
<td>531</td>
</tr>
</tbody>
</table>
Fourier Series, Fourier Transform and Their Applications to Mathematical Physics
Serov, V.
2017, XI, 534 p. 4 illus., Hardcover
ISBN: 978-3-319-65261-0