Contents

1 Introduction .. 1
 References .. 2

2 Continuous Time Methodology and Mathematical Models
 in Search of Optimum Investment Strategy in Thermal Plants
 and Combined Heat and Power Plants 3
 2.1 Introduction ... 3
 2.2 Continuous Time Methodology in Search of an Optimum
 Investment Strategy in Heat Sources 5
 2.2.1 Continuous Time Mathematical Model in Search
 of an Optimum Investment Strategy in Combined
 Heat and Electricity Sources 7
 2.2.2 Methodology of Analyzing the Impact of Technical
 and Economic Parameters on the Specific Cost
 of Heat Production .. 18
 2.3 Conclusions .. 29
 References .. 30

3 Continuous Time Methodology and Mathematical Model
 for Analysis of Technical and Economic Effectiveness
 of Modernizing a Thermal Plant and Combined Heat
 and Power Plant .. 33
 3.1 Introduction .. 33
 3.2 Continuous Time Methodology of the Analysis of Technical
 and Economic Effectiveness of Modernizing Thermal Plants
 and Combined Heat and Power Plants 34
 3.2.1 Continuous Time Mathematical Model for the Analysis
 of Technical and Economic Effectiveness of Modernizing
 Thermal Plant and Combined Heat and Power Plant 35
 3.3 Selection of Optimum Technology of Modernizing Combined
 Heat and Power Plant 41
3.3.1 Unlimited Number of Solutions 43
3.4 Incremental Methodology of Analyzing the Economic Effectiveness of Modernizing Heat and Electricity Sources 49
3.5 Conclusions ... 53
References .. 53

4 Continuous Time Methodology and Mathematical Models for the Analysis of the Market Value of Thermal Plant and Heat and Power Plant and the Value of the Market Supplied by Them .. 55
4.1 Introduction ... 55
4.2 Continuous Time Methodology for Analysis of Market Value of Thermal Plant and Combined Heat and Power Plant and Value of the Market Supplied by Them not Accounting for Investment in Modernization .. 56
4.3 Continuous Time Methodology for Analysis of the Market Value of Thermal Plant and Combined Heat and Power Plant and Value of the Market Supplied by Them Accounting for the Investment in Modernization .. 60
4.3.1 Continuous Time Mathematical Models for Analysis and Valuation of the Market Value of Modernized Thermal Plant and Combined Heat and Power Plant and Value of the Market Supplied by Them Accounting for the Investment in Modernization .. 62
4.4 Results of Exemplary Calculations 68
4.4.1 Market Value of 370 MW Condensing Type Power Unit and Value of the Electricity Market Supplied by It .. 70
4.4.2 Market Value of 370 MW Power Unit Adapted to Combined Cycle and Value of the Electricity Market Supplied by It .. 77
4.4.3 Conclusions ... 78
References .. 90

5 Summary and Final Conclusions 91
Index .. 95
Investment Strategy in Heating and CHP
Mathematical Models
Bartnik, R.; Buryn, Z.; Hnydiuk-Stefan, A.
2017, XII, 96 p. 35 illus., 30 illus. in color., Softcover
ISBN: 978-3-319-61023-8