Preface

Heterocyclic N-oxides have gained in prominence in many areas of chemistry in the past several decades. In the area of organic synthesis, N-oxides have emerged as important substrates for regioselective functionalization of C–H bonds and cycloaddition reactions. There has also been a surge in interest in the catalytic, energetic, and photochemical properties of N-oxides. This volume seeks to provide an update on the recent advances in these important areas of chemistry of heterocyclic N-oxides. In the first chapter David E. Chavez gives an in-depth overview of the progress in the studies that aim to exploit the unique structural and electronic properties of N-oxides for the development of novel energetic materials (see chapter “Energetic Heterocyclic N-Oxides”). The moderate Lewis basicity of the oxygen atom in N-oxides has been employed in the design of catalysts for a variety of asymmetric transformations. Martin Kotora et al. examine the current state of the art in catalytic applications of heterocyclic N-oxides (see chapter “Pyridine N-Oxides and Derivatives Thereof in Organocatalysis”). N-Oxide functionality has emerged as a versatile directing group in the burgeoning field of C–H functionalization of N-heterocycles. David E. Stephens and Oleg V. Larionov survey recent advances in transition metal-catalyzed C–H functionalization of azine and azole N-oxides with the focus on transformations that retain the N-oxide functionality (see chapter “Transition Metal-Catalyzed C–H Functionalization of Heterocyclic N-Oxides”). Cycloaddition reactions of heterocyclic N-oxides play an important role in the synthesis of nitrogen-containing heterocycles. Rafał Loska discusses mechanisms and synthetic applications of cycloaddition reactions of azine and azole N-oxides (see chapter “Recent Advances in Cycloaddition Reactions of Heterocyclic N-Oxides”). The photoinduced transformations of heteroarene N-oxides have been intensively studied since the early days of heterocyclic chemistry. An excellent overview of the current status of photochemistry of N-oxides is given by James S. Poole (see chapter “Recent Advances in the Photochemistry of Heterocyclic N-Oxides and their Derivatives”).

The aim of this book is to shed light on some of the most exciting developments in the chemistry of heterocyclic N-oxides and to demonstrate the versatility of their
applications across a wide range of fields – from energetic materials to catalysis, and from photochemistry to organic synthesis.

I thank the authors and the editorial staff at Springer for their dedication and efforts that have led to the production of this book.

San Antonio, TX, USA
Oleg V. Larionov

February 2017
Heterocyclic N-Oxides
Larionov, O.V. (Ed.)
2017, VII, 157 p., Hardcover
ISBN: 978-3-319-60686-6