Chapter 2
Partial Orders and Pontryagin Duality

Abstract Partial orders, supernatural numbers, and Pontryagin duality, are discussed.

2.1 Partial Orders

Definition 2.1 (i) A partially ordered set is a set S with a relation \preceq, and the properties:

1. (reflexivity) $a \preceq a$, for all $a \in S$;
2. (antisymmetry) if $a \preceq b$ and $b \preceq a$, then $a = b$;
3. (transitivity) if $a \preceq b$ and $b \preceq c$, then $a \preceq c$.

(ii) A directed partially ordered set S, is a partially ordered set with the additional property that for $a, b \in S$, there exists $c \in S$ such that $a \preceq c$ and $b \preceq c$.

a, b are comparable if $a \preceq b$ or $b \preceq a$. A partially ordered set where any pair of elements is comparable, is a chain (total order).

Definition 2.2 Two partially ordered sets (S, \preceq) and (S', \preceq') are order isomorphic, if there is a bijective map f from S to S', and $f(a_1) \preceq' f(a_2)$, if and only if $a_1 \preceq a_2$.

Example 2.1

- the partial order ‘subgroup’ in a set of groups
- the partial order ‘less or equal’ in the set of natural numbers \mathbb{N} (i.e., $a \preceq b$ if $a \leq b$)
- the partial order ‘divisibility’ in the set of natural numbers \mathbb{N} (i.e., $a \preceq b$ if $a|b$)

For simplicity we use the same symbol \preceq for different partial orders, and its precise meaning is clear from the context.

Definition 2.3 An upper bound of a subset T of the partially ordered set S, is an element $a \in S$ such that $b \preceq a$ for all $b \in T$. If the set of all upper bounds of T has a smallest element, it is called the supremum of T.
An element \(m \in S \) is called maximal, if there is no element \(k \in S \) such that \(m \prec k \). A partially ordered set might have many maximal elements, or it might have no maximal element.

Definition 2.4 A partially ordered set \(S \), is called directed-complete partial order (dcpo) if one of the following two statements, which can be proved to be equivalent to each other [1–3], holds:

1. Every directed subset of \(S \) has a supremum.
2. Every chain in \(S \) has a supremum.

A chain which has a supremum, is called a complete chain.

Directed partially ordered sets which are not complete, can sometimes be enlarged into directed-complete partial orders, by adding extra elements.

Example 2.2 The set \(\mathbb{N} \) of natural numbers, with divisibility as an order is a directed partially ordered set, but it is not a directed-complete partial order. For example the chain \(p, p^2, p^3, \ldots \) where \(p \in \Pi \), has no supremum. \(\mathbb{N} \) has no maximal elements. Below we enlarge this set into the supernatural (Steinitz) numbers, which is a directed-complete partial order.

2.2 The Directed-Complete Partial Order of Supernatural (Steinitz) Numbers

The set \(\mathbb{N}_S \) of supernatural (Steinitz) numbers [4, 5] is:

\[
\mathbb{N}_S = \left\{ n = \prod p^{e_p} \mid p \in \Pi; \quad e_p \in \mathbb{Z}_0^+ \cup \{\infty\} \right\}
\]

(2.1)

The index \(S \) indicates supernatural or Steinitz. Here:

- The exponents can take the value \(\infty \).
- The product might contain an infinite number of prime numbers.

In this set only multiplication is well defined, and by definition

\[
p^\infty p^e = p^\infty; \quad e \in \mathbb{Z}_0^+ \cup \{\infty\}.
\]

(2.2)

\(\mathbb{N} \) is a subset of \(\mathbb{N}_S \). Indeed, if all \(e_p \neq \infty \) and only a finite number of them are different from zero, the \(\prod p^{e_p} \in \mathbb{N} \).

Definition 2.5

- Let \((e_p)\) (where \(p \in \Pi \) and \(e_p \in \mathbb{Z}_0^+ \cup \{\infty\}\)) be an infinite sequence of exponents. The \((e_p) \prec (e'_p)\) indicates that \(e_p \leq e'_p \) for all \(p \). By definition all numbers in \(\mathbb{Z}_0^+ \) are smaller than \(\infty \).
- \(n = \prod p^{e_p} \) is a divisor of \(n' = \prod p^{e_p} \), if \((e_p) \prec (e'_p)\). We denote this as \(n|n' \) or as \(n < n' \).
• \mathcal{E} is the element of \mathbb{N}_S, corresponding to the sequence where all $e_p = 1$:

$$\mathcal{E} = \prod_{p \in \Pi} p$$ (2.3)

• \mathcal{Y} is the element of \mathbb{N}_S, corresponding to the sequence where all $e_p = \infty$:

$$\mathcal{Y} = \prod_{p \in \Pi} p^\infty$$ (2.4)

Every element of \mathbb{N}_S is a divisor of \mathcal{Y}.

The set \mathbb{N}_S ordered by divisibility (as defined above) is a directed-complete partial order, with \mathcal{Y} as supremum. Examples of complete chains in \mathbb{N}_S, are

$$p, p^2, ..., p^\infty; \quad p \in \Pi$$

$$p_1 < p_1^2 < ... < p_1^\infty < p_1^\infty p_2 < p_1^\infty p_2^2 < ... < p_1^\infty p_2^\infty$$

$$2 < 2 \cdot 3 < 2 \cdot 3 \cdot 5 < ... < \mathcal{E}$$

$$2^\infty < 2^\infty 3^\infty < 2^\infty 3^\infty 5^\infty < ... < \mathcal{Y}$$ (2.5)

The suprema in these chains are $p^\infty, p_1^\infty p_2^\infty, \mathcal{E}$ and \mathcal{Y}, correspondingly. They are examples of the elements that have been added into \mathbb{N}, in order to make it the directed-complete partial order \mathbb{N}_S.

We use the notation $\mathbb{N}_S(p)$ for the complete chain

$$\mathbb{N}_S(p) = \{p, p^2, ..., p^\infty\}. \quad (2.6)$$

2.3 Pontryagin Duality

Let G be an Abelian group and \tilde{G} its Pontryagin dual group, i.e. the group of its characters (we use the notation χ for characters). For locally compact Abelian groups, the Pontryagin duality theorem states that

$$\tilde{\tilde{G}} \cong G. \quad (2.7)$$

Let \mathfrak{G} be a set of groups, and $\tilde{\mathfrak{G}}$ the set of their Pontryagin dual groups. The partial order subgroup in \mathfrak{G}, endows a partial order in $\tilde{\mathfrak{G}}$, where $\tilde{A} < \tilde{G}$ if $A < G$.

Definition 2.6 Let A be a subgroup of G (we denote this as $A < G$). The annihilator $\text{Ann}_G(A)$ of A, is the subgroup of \tilde{G}:

$$\text{Ann}_G(A) = \{b \in \tilde{G} \mid \chi_b(a) = 1, \forall a \in A\} \quad (2.8)$$
The groups G relevant to this monograph, together with their Pontryagin dual groups \tilde{G}, and the corresponding quantum system are shown in Table 2.1.

<table>
<thead>
<tr>
<th>G</th>
<th>\tilde{G}</th>
<th>$\Sigma(G, \tilde{G})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{Z}(d)$</td>
<td>$\mathbb{Z}(d)$</td>
<td>$\Sigma[\mathbb{Z}(d)]$</td>
</tr>
<tr>
<td>$GF(p^\ell)$</td>
<td>$GF(p^\ell)$</td>
<td>$\Sigma[GF(p^\ell)]$</td>
</tr>
<tr>
<td>\mathbb{Z}_p</td>
<td>$\mathbb{Q}_p/\mathbb{Z}_p$</td>
<td>$\Sigma[\mathbb{Z}_p, (\mathbb{Q}_p/\mathbb{Z}_p)]$</td>
</tr>
<tr>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}/\mathbb{Z}</td>
<td>$\Sigma[\mathbb{Q}, (\mathbb{Q}/\mathbb{Z})]$</td>
</tr>
</tbody>
</table>

The following proposition gives the Pontryagin dual group \tilde{A} of a subgroup A of a group G, and we present it without proof (e.g., [6]).

Proposition 2.1 If $A < G$, then the Pontryagin dual group of A is isomorphic to $\tilde{G}/\text{Ann}_{\tilde{G}}(A)$:

$$\tilde{A} \cong \tilde{G}/\text{Ann}_{\tilde{G}}(A).$$

(2.9)

In quantum mechanics G can be used as the group of ‘positions’, and its Pontryagin dual \tilde{G} as the group of ‘momenta’. We denote such a quantum system as $\Sigma(G, \tilde{G})$. For some groups $G \cong \tilde{G}$, and then we use the simpler notation $\Sigma(G)$ for the corresponding quantum system.

Definition 2.7 $\Sigma(A, \tilde{A})$ is a subsystem of $\Sigma(G, \tilde{G})$ if $A < G$ (in which case the \tilde{A} is related to \tilde{G} as in Eq. (2.9)). We denote this as $\Sigma(A, \tilde{A}) < \Sigma(G, \tilde{G})$.

The groups G relevant to this monograph, together with their Pontryagin dual groups \tilde{G}, and the corresponding quantum system, are shown in Table 2.1.

References

Finite and Profinite Quantum Systems
Vourdas, A.
2017, XIII, 196 p. 7 illus., 4 illus. in color., Hardcover
ISBN: 978-3-319-59494-1