Chapter 2
Partial Orders and Pontryagin Duality

Abstract Partial orders, supernatural numbers, and Pontryagin duality, are discussed.

2.1 Partial Orders

Definition 2.1 (i) A partially ordered set is a set \(S \) with a relation \(\prec \), and the properties:

1. (reflexivity) \(a \prec a \), for all \(a \in S \);
2. (antisymmetry) if \(a \prec b \) and \(b \prec a \), then \(a = b \);
3. (transitivity) if \(a \prec b \) and \(b \prec c \), then \(a \prec c \).

(ii) A directed partially ordered set \(S \), is a partially ordered set with the additional property that for \(a, b \in S \), there exists \(c \in S \) such that \(a \prec c \) and \(b \prec c \).

\(a, b \) are comparable if \(a \prec b \) or \(b \prec a \). A partially ordered set where any pair of elements is comparable, is a chain (total order).

Definition 2.2 Two partially ordered sets \((S, \prec)\) and \((S', \prec')\) are order isomorphic, if there is a bijective map \(f \) from \(S \) to \(S' \), and \(f(a_1) \prec' f(a_2) \), if and only if \(a_1 \prec a_2 \).

Example 2.1

• the partial order ‘subgroup’ in a set of groups
• the partial order ‘less or equal’ in the set of natural numbers \(\mathbb{N} \) (i.e., \(a < b \) if \(a \leq b \))
• the partial order ‘divisibility’ in the set of natural numbers \(\mathbb{N} \) (i.e., \(a \prec b \) if \(a|b \))

For simplicity we use the same symbol \(\prec \) for different partial orders, and its precise meaning is clear from the context.

Definition 2.3 An upper bound of a subset \(T \) of the partially ordered set \(S \), is an element \(a \in S \) such that \(b \prec a \) for all \(b \in T \). If the set of all upper bounds of \(T \) has a smallest element, it is called the supremum of \(T \).
An element $m \in S$ is called maximal, if there is no element $k \in S$ such that $m \prec k$. A partially ordered set might have many maximal elements, or it might have no maximal element.

Definition 2.4 A partially ordered set S, is called directed-complete partial order (dcpo) if one of the following two statements, which can be proved to be equivalent to each other [1–3], holds:

1. Every directed subset of S has a supremum.
2. Every chain in S has a supremum.

A chain which has a supremum, is called a complete chain.

Directed partially ordered sets which are not complete, can sometimes be enlarged into directed-complete partial orders, by adding extra elements.

Example 2.2 The set \mathbb{N} of natural numbers, with divisibility as an order is a directed partially ordered set, but it is not a directed-complete partial order. For example the chain p, p^2, p^3, \ldots where $p \in \Pi$, has no supremum. \mathbb{N} has no maximal elements. Below we enlarge this set into the supernatural (Steinitz) numbers, which is a directed-complete partial order.

2.2 The Directed-Complete Partial Order of Supernatural (Steinitz) Numbers

The set \mathbb{N}_S of supernatural (Steinitz) numbers [4, 5] is:

$$\mathbb{N}_S = \left\{ n = \prod p^{e_p} \mid p \in \Pi; \quad e_p \in \mathbb{Z}_0^+ \cup \{\infty\} \right\}$$

(2.1)

The index S indicates supernatural or Steinitz. Here:

- The exponents can take the value ∞.
- The product might contain an infinite number of prime numbers.

In this set only multiplication is well defined, and by definition

$$p^\infty p^e = p^\infty; \quad e \in \mathbb{Z}_0^+ \cup \{\infty\}. \quad (2.2)$$

\mathbb{N} is a subset of \mathbb{N}_S. Indeed, if all $e_p \neq \infty$ and only a finite number of them are different from zero, the $\prod p^{e_p} \in \mathbb{N}$.

Definition 2.5

- Let (e_p) (where $p \in \Pi$ and $e_p \in \mathbb{Z}_0^+ \cup \{\infty\}$) be an infinite sequence of exponents. The $(e_p) \prec (e'_p)$ indicates that $e_p \leq e'_p$ for all p. By definition all numbers in \mathbb{Z}_0^+ are smaller than ∞.
- $n = \prod p^{e_p}$ is a divisor of $n' = \prod p^{e'_p}$, if $(e_p) \prec (e'_p)$. We denote this as $n \mid n'$ or as $n \prec n'$.
2.2 The Directed-Complete Partial Order of Supernatural (Steinitz) Numbers

- \mathcal{E} is the element of \mathbb{N}_S, corresponding to the sequence where all $e_p = 1$:
 \[\mathcal{E} = \prod_{p \in \Pi} p \] (2.3)

- \mathcal{Y} is the element of \mathbb{N}_S, corresponding to the sequence where all $e_p = \infty$:
 \[\mathcal{Y} = \prod_{p \in \Pi} p^\infty \] (2.4)

Every element of \mathbb{N}_S is a divisor of \mathcal{Y}.

The set \mathbb{N}_S ordered by divisibility (as defined above) is a directed-complete partial order, with \mathcal{Y} as supremum. Examples of complete chains in \mathbb{N}_S, are

\[\begin{align*}
 p, p^2, \ldots, p^\infty; & \quad p \in \Pi \\
p_1 < p_1^2 < \ldots < p_1^\infty & < p_1^\infty p_2 < p_1^\infty p_2^2 < \ldots < p_1^\infty p_2^\infty \\
2 < 2 \cdot 3 < 2 \cdot 3 \cdot 5 & < \ldots < \mathcal{E} \\
2^\infty < 2^\infty 3^\infty < 2^\infty 3^\infty 5^\infty & < \ldots < \mathcal{Y}
\end{align*} \] (2.5)

The suprema in these chains are p^∞, $p_1^\infty p_2^\infty$, \mathcal{E} and \mathcal{Y}, correspondingly. They are examples of the elements that have been added into \mathbb{N}, in order to make it the directed-complete partial order \mathbb{N}_S.

We use the notation $\mathbb{N}_S(p)$ for the complete chain

\[\mathbb{N}_S(p) = \{ p, p^2, \ldots, p^\infty \}. \] (2.6)

2.3 Pontryagin Duality

Let G be an Abelian group and \tilde{G} its Pontryagin dual group, i.e. the group of its characters (we use the notation χ for characters). For locally compact Abelian groups, the Pontryagin duality theorem states that

\[\tilde{\tilde{G}} \cong G. \] (2.7)

Let \mathfrak{G} be a set of groups, and $\tilde{\mathfrak{G}}$ the set of their Pontryagin dual groups. The partial order subgroup in \mathfrak{G}, endows a partial order in $\tilde{\mathfrak{G}}$, where $\tilde{A} < \tilde{G}$ if $A < G$.

Definition 2.6 Let A be a subgroup of G (we denote this as $A < G$). The annihilator $\text{Ann}_G(A)$ of A, is the subgroup of \tilde{G}:

\[\text{Ann}_G(A) = \{ b \in \tilde{G} \mid \chi_b(a) = 1, \forall a \in A \} \] (2.8)
Table 2.1 The groups G relevant to this monograph, together with their Pontryagin dual groups \tilde{G}, and the corresponding quantum system

<table>
<thead>
<tr>
<th>G</th>
<th>\tilde{G}</th>
<th>$\Sigma(G, \tilde{G})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{Z}(d)$</td>
<td>$\mathbb{Z}(d)$</td>
<td>$\Sigma[\mathbb{Z}(d)]$</td>
</tr>
<tr>
<td>$GF(p^\epsilon)$</td>
<td>$GF(p^\epsilon)$</td>
<td>$\Sigma[GF(p^\epsilon)]$</td>
</tr>
<tr>
<td>\mathbb{Z}_p</td>
<td>$\mathbb{Q}_p/\mathbb{Z}_p$</td>
<td>$\Sigma[\mathbb{Z}_p, (\mathbb{Q}_p/\mathbb{Z}_p)]$</td>
</tr>
<tr>
<td>$\hat{\mathbb{Z}}$</td>
<td>\mathbb{Q}/\mathbb{Z}</td>
<td>$\Sigma[\hat{\mathbb{Z}}, (\mathbb{Q}/\mathbb{Z})]$</td>
</tr>
</tbody>
</table>

The following proposition gives the Pontryagin dual group \tilde{A} of a subgroup A of a group G, and we present it without proof (e.g., [6]).

Proposition 2.1 If $A < G$, then the Pontryagin dual group of A is isomorphic to $\tilde{G}/\text{Ann}_{\tilde{G}}(A)$:

$$\tilde{A} \cong \tilde{G}/\text{Ann}_{\tilde{G}}(A).$$ (2.9)

In quantum mechanics G can be used as the group of ‘positions’, and its Pontryagin dual \tilde{G} as the group of ‘momenta’. We denote such a quantum system as $\Sigma(G, \tilde{G})$. For some groups $G \cong \tilde{G}$, and then we use the simpler notation $\Sigma(G)$ for the corresponding quantum system.

Definition 2.7 $\Sigma(A, \tilde{A})$ is a subsystem of $\Sigma(G, \tilde{G})$ if $A < G$ (in which case the \tilde{A} is related to \tilde{G} as in Eq. (2.9)). We denote this as $\Sigma(A, \tilde{A}) \prec \Sigma(G, \tilde{G})$.

The groups G relevant to this monograph, together with their Pontryagin dual groups \tilde{G}, and the corresponding quantum system, are shown in Table 2.1.

References

Finite and Profinite Quantum Systems
Vourdas, A.
2017, XIII, 196 p. 7 illus., 4 illus. in color., Hardcover
ISBN: 978-3-319-59494-1