Contents

1 On the “Complex” Interplay Between Mathematics and Living Systems .. 1
 1.1 Introduction .. 1
 1.2 A Quest Through Three Scientific Contributions 3
 1.3 Five Key Questions .. 5
 1.4 Complexity Features of Living Systems 5
 1.5 Rationale Toward Modeling and Plan of the Book 11

2 A Brief Introduction to the Mathematical Kinetic Theory of Classical Particles 15
 2.1 Plan of the Chapter .. 15
 2.2 Phenomenological Derivation of the Boltzmann Equation 16
 2.2.1 Interaction dynamics 19
 2.2.2 The Boltzmann equation 20
 2.2.3 Properties of the Boltzmann equation 23
 2.3 Some Generalized Models ... 25
 2.3.1 The BGK model .. 26
 2.3.2 The discrete Boltzmann equation 26
 2.3.3 Vlasov and Enskog equations 28
 2.4 Computational Methods ... 30
 2.5 Critical Analysis .. 31

3 On the Search for a Structure: Toward a Mathematical Theory to Model Living Systems 33
 3.1 Plan of the Chapter .. 33
 3.2 A Representation of Large Living Systems 35
 3.3 Mathematical Structures for Systems with Space Homogeneity 39
 3.3.1 A phenomenological description of games 39
 3.3.2 Modeling interactions by tools of game theory 42
 3.3.3 Mathematical structures for closed systems 44
3.3.4 Mathematical structures for open systems 46
3.3.5 Sources of nonlinearity .. 48

3.4 Mathematical Structures for the Dynamics in a Network 50
3.4.1 Structures for discrete activity variables 54

3.5 Structures when Space is a Continuous Variable 55
3.5.1 Representation .. 56
3.5.2 Modeling interactions .. 58
3.5.3 Preliminary rationale toward modeling interactions 59
3.5.4 Mathematical structures .. 64
3.5.5 Mean field models .. 68
3.5.6 Perturbation of space homogeneity 69

3.6 Critical Analysis ... 70

4 From the Mathematical Theory to Applications 75
4.1 Plan of the Chapter ... 75
4.2 Selection of the Case Studies ... 77
4.3 From Mathematical Structures to the Derivation of Models 78
4.4 Additional Rationale on the Validation of Models 79
4.5 Critical Analysis ... 82

5 Modeling Social Behavioral Dynamics 85
5.1 Plan of the Chapter ... 85
5.2 On the Contribution of Mathematics to Social Sciences 86
5.2.1 From bounded rationality to behavioral social dynamics 86
5.2.2 Mathematical tools toward modeling social dynamics 88
5.3 On the Search of a Mathematical Structure 90
5.3.1 Heuristic description and representation of social systems 90
5.3.2 Mathematical structures .. 92
5.3.3 Some reasonings toward modeling interactions 95
5.3.4 An overview of models and their conceptual basis 97
5.4 Hallmarks of a Systems Theory of Social Systems 98
5.4.1 Ability to capture complexity features 98
5.4.2 Towards a systems approach 99
5.4.3 Reasonings on a case study 100
5.4.4 Simulations and parameters sensitivity analysis 104
5.5 Open Problems and Research Perspectives 111
5.5.1 Perspectives in modeling social dynamics 112
5.5.2 Modeling multicellular systems and immune competition 113
5.5.3 Revisiting population dynamics 116
5.5.4 Analytic problems ... 117
6 Mathematical Models of Crowd Dynamics in Complex Venues............. 119
 6.1 Plan of the Chapter.. 119
 6.2 Overview on Crowd Modeling................................ 120
 6.2.1 Features of Behavioral Crowds.................... 121
 6.2.2 Scaling, Representation, and Mathematical Structures... 122
 6.3 On the Kinetic Theory Approach to Behavioral Dynamics............. 125
 6.3.1 Mesoscopic Representation of a Crowd............... 126
 6.3.2 A Mathematical Structure............................ 127
 6.4 Mathematical Models....................................... 129
 6.4.1 Modeling Crowds in Bounded and Unbounded Domains........ 130
 6.4.2 Modeling Panic Conditions........................... 133
 6.5 Crowd Dynamics Simulations.................................. 135
 6.5.1 Consistency with the Velocity Diagrams.............. 136
 6.5.2 Self-organized Lane Formation....................... 138
 6.6 On the Dynamics of Multicellular Systems.......................... 142
 6.6.1 From Kinetic Theory to a Macroscopic Model......... 144
 6.6.2 A Numerical Test and Critical Analysis............. 150
 6.7 Open Problems and Research Perspectives.......................... 154
 6.7.1 Social Dynamics in Human Crowds.................... 154
 6.7.2 Modeling Vehicular Traffic........................... 155
 6.7.3 Some Reasonings on the Modeling of Swarm Dynamics........ 156
 6.7.4 Analytic and Computational Problems.................. 159

7 On the Search for a Mathematical Theory of Living Systems............. 161
 7.1 Plan of the Chapter.. 161
 7.2 On the Conceptual Distance between Soft and Hard Sciences........ 162
 7.3 Multiscale Issues Toward a Mathematical Theory................... 164
 7.4 Waiting for a Mathematical Theory of Living Systems............. 166

References... 169

Index... 179