Part I The Big Bang and the Observable Universe

1 A Historical Overview 3
 1.1 The Big Cosmic Questions 3
 1.2 Origins of Scientific Cosmology 4
 1.3 Cosmology Today 7

2 Newton’s Universe 13
 2.1 Newton’s Laws of Motion 13
 2.2 Newtonian Gravity 16
 2.3 Acceleration of Free Fall 19
 2.4 Circular Motion and Planetary Orbits 20
 2.5 Energy Conservation and Escape Velocity 22
 2.6 Newtonian Cosmology 26
 2.7 Olbers’ Paradox 27

3 Special Relativity 31
 3.1 The Principle of Relativity 31
 3.2 The Speed of Light and Electromagnetism 35
 3.3 Einstein’s Postulates 39
 3.4 Simultaneity 41
 3.5 Time Dilation 42
 3.6 Length Contraction 44
 3.6.1 Speeding Muons 45
 3.7 $E = mc^2$ 46
 3.8 From Space and Time to Spacetime 47
 3.9 Causality in Spacetime 51
4 The Fabric of Space and Time
 4.1 The Astonishing Hypothesis
 4.2 The Geometry of Space
 4.2.1 Euclidean Geometry
 4.2.2 Non-Euclidean Geometry
 4.3 Curved Space
 4.3.1 The Curvature of Surfaces
 4.3.2 The Curvature of Three-Dimensional Space
 4.4 The General Theory of Relativity
 4.5 Predictions and Tests of General Relativity
 4.5.1 Light Deflection and Gravitational Lensing
 4.5.2 Gravitational Time Dilation
 4.5.3 Black Holes
 4.5.4 Gravitational Waves
5 An Expanding Universe
 5.1 Einstein’s Static Universe
 5.2 Problems with a Static Universe
 5.3 Friedmann’s Expanding Universe
6 Observational Cosmology
 6.1 Fingerprints of the Elements
 6.2 Measuring Velocities
 6.3 Measuring Distances
 6.4 The Birth of Extragalactic Astronomy
7 Hubble’s Law and the Expanding Universe
 7.1 An Expanding Universe
 7.2 A Beginning of the Universe?
 7.3 The Steady State Theory
 7.4 The Scale Factor
 7.5 Cosmological Redshift
 7.6 The Age of the Universe
 7.7 The Hubble Distance and the Cosmic Horizon
 7.8 Not Everything is Expanding
8 The Fate of the Universe
 8.1 The Critical Density
 8.2 The Density Parameter
14.5 Physics Beyond the Standard Model 213
 14.5.1 Unifying the Fundamental Forces 213
14.6 Vacuum Defects 215
 14.6.1 Domain Walls 216
 14.6.2 Cosmic Strings 217
 14.6.3 Magnetic Monopoles 220
14.7 Baryogenesis 220

Part II Beyond the Big Bang

15 Problems with the Big Bang 227
 15.1 The Flatness Problem: Why is the Geometry of the Universe Flat? 227
 15.2 The Horizon Problem: Why is the Universe so Homogeneous? 229
 15.3 The Structure Problem: What is the Origin of Small Density Fluctuations? 232
 15.4 The Monopole Problem: Where Are They? 232

16 The Theory of Cosmic Inflation 235
 16.1 Solving the Flatness and Horizon Problems 235
 16.2 Cosmic Inflation 236
 16.2.1 The False Vacuum 236
 16.2.2 Exponential Expansion 238
 16.3 Solving the Problems of the Big Bang 240
 16.3.1 The Flatness Problem 240
 16.3.2 The Horizon Problem 241
 16.3.3 The Structure Formation Problem 242
 16.3.4 The Monopole Problem 242
 16.3.5 The Expansion and High Temperature of the Universe 242
 16.4 Vacuum Decay 243
 16.4.1 Boiling of the Vacuum 243
 16.4.2 Graceful Exit Problem 244
 16.4.3 Slow Roll Inflation 245
 16.5 Origin of Small Density Fluctuations 247
 16.6 More About Inflation 249
 16.6.1 Communication in the Inflating Universe 249
 16.6.2 Energy Conservation 250
17 Testing Inflation: Predictions and Observations 255
 17.1 Flatness 255
 17.2 Density Fluctuations 256
 17.3 Gravitational Waves 260
 17.4 Open Questions 264

18 Eternal Inflation 269
 18.1 Volume Growth and Decay 269
 18.2 Random Walk of the Inflaton Field 271
 18.3 Eternal Inflation via Bubble Nucleation 274
 18.4 Bubble Spacetimes 275
 18.5 Cosmic Clones 279
 18.6 The Multiverse 281
 18.7 Testing the Multiverse 284
 18.7.1 Bubble Collisions 284
 18.7.2 Black Holes from the Multiverse 285

19 String Theory and the Multiverse 291
 19.1 What Is String Theory? 292
 19.2 Extra Dimensions 294
 19.3 The Energy Landscape 295
 19.4 String Theory Multiverse 296
 19.5 The Fate of Our Universe Revisited 297

20 Anthropic Selection 301
 20.1 The Fine Tuning of the Constants of Nature 302
 20.1.1 Neutron Mass 302
 20.1.2 Strength of the Weak Interaction 303
 20.1.3 Strength of Gravity 303
 20.1.4 The Magnitude of Density Perturbations 303
 20.2 The Cosmological Constant Problem 304
 20.2.1 The Dynamic Quantum Vacuum 304
 20.2.2 Fine-Tuned for Life? 305
 20.3 The Anthropic Principle 307
 20.4 Pros and Cons of Anthropic Explanations 309

21 The Principle of Mediocrity 313
 21.1 The Bell Curve 313
 21.2 The Principle of Mediocrity 314
 21.3 Obtaining the Distribution by Counting Observers 315
Cosmology for the Curious
Perlov, D.; Vilenkin, A.
2017, XIV, 372 p. 202 illus., 63 illus. in color., Hardcover
ISBN: 978-3-319-57038-9