Part I The Big Bang and the Observable Universe

1 **A Historical Overview** 3
1.1 The Big Cosmic Questions 3
1.2 Origins of Scientific Cosmology 4
1.3 Cosmology Today 7

2 **Newton’s Universe** 13
2.1 Newton’s Laws of Motion 13
2.2 Newtonian Gravity 16
2.3 Acceleration of Free Fall 19
2.4 Circular Motion and Planetary Orbits 20
2.5 Energy Conservation and Escape Velocity 22
2.6 Newtonian Cosmology 26
2.7 Olbers’ Paradox 27

3 **Special Relativity** 31
3.1 The Principle of Relativity 31
3.2 The Speed of Light and Electromagnetism 35
3.3 Einstein’s Postulates 39
3.4 Simultaneity 41
3.5 Time Dilation 42
3.6 Length Contraction 44
3.6.1 Speeding Muons 45
3.7 $E = mc^2$ 46
3.8 From Space and Time to Spacetime 47
3.9 Causality in Spacetime 51
4 The Fabric of Space and Time 59
 4.1 The Astonishing Hypothesis 60
 4.2 The Geometry of Space 63
 4.2.1 Euclidean Geometry 63
 4.2.2 Non-Euclidean Geometry 66
 4.3 Curved Space 67
 4.3.1 The Curvature of Surfaces 67
 4.3.2 The Curvature of Three-Dimensional Space 70
 4.4 The General Theory of Relativity 72
 4.5 Predictions and Tests of General Relativity 75
 4.5.1 Light Deflection and Gravitational Lensing 75
 4.5.2 Gravitational Time Dilation 77
 4.5.3 Black Holes 77
 4.5.4 Gravitational Waves 78

5 An Expanding Universe 83
 5.1 Einstein’s Static Universe 83
 5.2 Problems with a Static Universe 86
 5.3 Friedmann’s Expanding Universe 89

6 Observational Cosmology 97
 6.1 Fingerprints of the Elements 98
 6.2 Measuring Velocities 99
 6.3 Measuring Distances 101
 6.4 The Birth of Extragalactic Astronomy 105

7 Hubble’s Law and the Expanding Universe 109
 7.1 An Expanding Universe 110
 7.2 A Beginning of the Universe? 113
 7.3 The Steady State Theory 114
 7.4 The Scale Factor 115
 7.5 Cosmological Redshift 116
 7.6 The Age of the Universe 117
 7.7 The Hubble Distance and the Cosmic Horizon 118
 7.8 Not Everything is Expanding 120

8 The Fate of the Universe 125
 8.1 The Critical Density 125
 8.2 The Density Parameter 128
9 Dark Matter and Dark Energy
 9.1 The Average Mass Density of the Universe and Dark Matter 131
 9.2 Dark Energy 136
 9.3 The Fate of the Universe—Again 140

10 The Quantum World
 10.1 Quantum Discreteness 143
 10.2 Quantum Indeterminism 145
 10.3 The Wave Function 148
 10.4 Many Worlds Interpretation 151

11 The Hot Big Bang
 11.1 Following the Expansion Backwards in Time 155
 11.2 Thermal Radiation 158
 11.3 The Hot Big Bang Model 161
 11.4 Discovering the Primeval Fireball 162
 11.5 Images of the Baby Universe 165
 11.6 CMB Today and at Earlier Epochs 168
 11.7 The Three Cosmic Eras 170

12 Structure Formation
 12.1 Cosmic Structure 175
 12.2 Assembling Structure 179
 12.3 Watching Cosmic Structures Evolve 180
 12.4 Primordial Density Fluctuations 182
 12.5 Supermassive Black Holes and Active Galaxies 183

13 Element Abundances
 13.1 Why Alchemists Did Not Succeed 187
 13.2 Big Bang Nucleosynthesis 189
 13.3 Stellar Nucleosynthesis 193
 13.4 Planetary System Formation 194
 13.5 Life in the Universe 196

14 The Very Early Universe
 14.1 Particle Physics and the Big Bang 201
 14.2 The Standard Model of Particle Physics 205
 14.2.1 The Particles 206
 14.2.2 The Forces 206
 14.3 Symmetry Breaking 208
 14.4 The Early Universe Timeline 211
14.5 Physics Beyond the Standard Model 213
 14.5.1 Unifying the Fundamental Forces 213
14.6 Vacuum Defects 215
 14.6.1 Domain Walls 216
 14.6.2 Cosmic Strings 217
 14.6.3 Magnetic Monopoles 220
14.7 Baryogenesis 220

Part II Beyond the Big Bang

15 Problems with the Big Bang 227
 15.1 The Flatness Problem: Why is the Geometry of the Universe Flat? 227
 15.2 The Horizon Problem: Why is the Universe so Homogeneous? 229
 15.3 The Structure Problem: What is the Origin of Small Density Fluctuations? 232
 15.4 The Monopole Problem: Where Are They? 232

16 The Theory of Cosmic Inflation 235
 16.1 Solving the Flatness and Horizon Problems 235
 16.2 Cosmic Inflation 236
 16.2.1 The False Vacuum 236
 16.2.2 Exponential Expansion 238
 16.3 Solving the Problems of the Big Bang 240
 16.3.1 The Flatness Problem 240
 16.3.2 The Horizon Problem 241
 16.3.3 The Structure Formation Problem 242
 16.3.4 The Monopole Problem 242
 16.3.5 The Expansion and High Temperature of the Universe 242
 16.4 Vacuum Decay 243
 16.4.1 Boiling of the Vacuum 243
 16.4.2 Graceful Exit Problem 244
 16.4.3 Slow Roll Inflation 245
 16.5 Origin of Small Density Fluctuations 247
 16.6 More About Inflation 249
 16.6.1 Communication in the Inflating Universe 249
 16.6.2 Energy Conservation 250
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Sections</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Testing Inflation: Predictions and Observations</td>
<td>17.1 Flatness 17.2 Density Fluctuations 17.3 Gravitational Waves 17.4 Open Questions</td>
<td>255 256 260 264</td>
</tr>
<tr>
<td>18</td>
<td>Eternal Inflation</td>
<td>18.1 Volume Growth and Decay 18.2 Random Walk of the Inflaton Field 18.3 Eternal Inflation via Bubble Nucleation 18.4 Bubble Spacetimes 18.5 Cosmic Clones 18.6 The Multiverse 18.7 Testing the Multiverse 18.7.1 Bubble Collisions 18.7.2 Black Holes from the Multiverse</td>
<td>269 271 274 275 279 281 284 284 285</td>
</tr>
<tr>
<td>21</td>
<td>The Principle of Mediocrity</td>
<td>21.1 The Bell Curve 21.2 The Principle of Mediocrity 21.3 Obtaining the Distribution by Counting Observers</td>
<td>313 313 314 315</td>
</tr>
</tbody>
</table>
21.4 Predicting the Cosmological Constant 316
 21.4.1 Rough Estimate 317
 21.4.2 The Distribution 317
21.5 The Measure Problem 319
21.6 The Doomsday Argument and the Future of Our Civilization 321
 21.6.1 Large and Small Civilizations 322
 21.6.2 Beating the Odds 323

22 Did the Universe Have a Beginning? 327
 22.1 A Universe that Always Existed? 327
 22.2 The BGV Theorem 329
 22.2.1 Where Does This Leave Us? 330
 22.2.2 A Proof of God? 331

23 Creation of Universes from Nothing 333
 23.1 The Universe as a Quantum Fluctuation 333
 23.2 Quantum Tunneling from “Nothing” 336
 23.2.1 Euclidean Time 337
 23.3 The Multiverse of Quantum Cosmology 338
 23.4 The Meaning of “Nothing” 339

24 The Big Picture 343
 24.1 The Observable Universe 343
 24.1.1 What Do We Know? 343
 24.1.2 Cosmic Inflation 344
 24.2 The Multiverse 345
 24.2.1 Bubble Universes 345
 24.2.2 Other Disconnected Spacetimes 346
 24.2.3 Levels of the Multiverse 346
 24.2.4 The Mathematical Multiverse and Ockham’s Razor 347
 24.3 Answers to the “Big Questions” 350
 24.4 Our Place in the Universe 351

Appendix A 353

Further Reading 361

Index 365
Cosmology for the Curious
Perlov, D.; Vilenkin, A.
2017, XIV, 372 p. 202 illus., 63 illus. in color., Hardcover
ISBN: 978-3-319-57038-9