Contents

Part I The Big Bang and the Observable Universe

1 A Historical Overview 3
  1.1 The Big Cosmic Questions 3
  1.2 Origins of Scientific Cosmology 4
  1.3 Cosmology Today 7

2 Newton’s Universe 13
  2.1 Newton’s Laws of Motion 13
  2.2 Newtonian Gravity 16
  2.3 Acceleration of Free Fall 19
  2.4 Circular Motion and Planetary Orbits 20
  2.5 Energy Conservation and Escape Velocity 22
  2.6 Newtonian Cosmology 26
  2.7 Olbers’ Paradox 27

3 Special Relativity 31
  3.1 The Principle of Relativity 31
  3.2 The Speed of Light and Electromagnetism 35
  3.3 Einstein’s Postulates 39
  3.4 Simultaneity 41
  3.5 Time Dilation 42
  3.6 Length Contraction 44
    3.6.1 Speeding Muons 45
  3.7 $E = mc^2$ 46
  3.8 From Space and Time to Spacetime 47
  3.9 Causality in Spacetime 51
4 The Fabric of Space and Time
  4.1 The Astonishing Hypothesis
  4.2 The Geometry of Space
    4.2.1 Euclidean Geometry
    4.2.2 Non-Euclidean Geometry
  4.3 Curved Space
    4.3.1 The Curvature of Surfaces
    4.3.2 The Curvature of Three-Dimensional Space
  4.4 The General Theory of Relativity
  4.5 Predictions and Tests of General Relativity
    4.5.1 Light Deflection and Gravitational Lensing
    4.5.2 Gravitational Time Dilation
    4.5.3 Black Holes
    4.5.4 Gravitational Waves

5 An Expanding Universe
  5.1 Einstein’s Static Universe
  5.2 Problems with a Static Universe
  5.3 Friedmann’s Expanding Universe

6 Observational Cosmology
  6.1 Fingerprints of the Elements
  6.2 Measuring Velocities
  6.3 Measuring Distances
  6.4 The Birth of Extragalactic Astronomy

7 Hubble’s Law and the Expanding Universe
  7.1 An Expanding Universe
  7.2 A Beginning of the Universe?
  7.3 The Steady State Theory
  7.4 The Scale Factor
  7.5 Cosmological Redshift
  7.6 The Age of the Universe
  7.7 The Hubble Distance and the Cosmic Horizon
  7.8 Not Everything is Expanding

8 The Fate of the Universe
  8.1 The Critical Density
  8.2 The Density Parameter
9 Dark Matter and Dark Energy 131
  9.1 The Average Mass Density of the Universe and Dark Matter 131
  9.2 Dark Energy 136
  9.3 The Fate of the Universe—Again 140

10 The Quantum World 143
  10.1 Quantum Discreteness 143
  10.2 Quantum Indeterminism 145
  10.3 The Wave Function 148
  10.4 Many Worlds Interpretation 151

11 The Hot Big Bang 155
  11.1 Following the Expansion Backwards in Time 155
  11.2 Thermal Radiation 158
  11.3 The Hot Big Bang Model 161
  11.4 Discovering the Primeval Fireball 162
  11.5 Images of the Baby Universe 165
  11.6 CMB Today and at Earlier Epochs 168
  11.7 The Three Cosmic Eras 170

12 Structure Formation 175
  12.1 Cosmic Structure 175
  12.2 Assembling Structure 179
  12.3 Watching Cosmic Structures Evolve 180
  12.4 Primordial Density Fluctuations 182
  12.5 Supermassive Black Holes and Active Galaxies 183

13 Element Abundances 187
  13.1 Why Alchemists Did Not Succeed 187
  13.2 Big Bang Nucleosynthesis 189
  13.3 Stellar Nucleosynthesis 193
  13.4 Planetary System Formation 194
  13.5 Life in the Universe 196

14 The Very Early Universe 201
  14.1 Particle Physics and the Big Bang 201
  14.2 The Standard Model of Particle Physics 205
    14.2.1 The Particles 206
    14.2.2 The Forces 206
  14.3 Symmetry Breaking 208
  14.4 The Early Universe Timeline 211
# Contents

14.5  Physics Beyond the Standard Model  
    14.5.1  Unifying the Fundamental Forces  
14.6  Vacuum Defects  
    14.6.1  Domain Walls  
    14.6.2  Cosmic Strings  
    14.6.3  Magnetic Monopoles  
14.7  Baryogenesis

## Part II Beyond the Big Bang

15  Problems with the Big Bang  
    15.1  The Flatness Problem: Why is the Geometry of the Universe Flat?  
    15.2  The Horizon Problem: Why is the Universe so Homogeneous?  
    15.3  The Structure Problem: What is the Origin of Small Density Fluctuations?  
    15.4  The Monopole Problem: Where Are They?

16  The Theory of Cosmic Inflation  
    16.1  Solving the Flatness and Horizon Problems  
    16.2  Cosmic Inflation  
        16.2.1  The False Vacuum  
        16.2.2  Exponential Expansion  
    16.3  Solving the Problems of the Big Bang  
        16.3.1  The Flatness Problem  
        16.3.2  The Horizon Problem  
        16.3.3  The Structure Formation Problem  
        16.3.4  The Monopole Problem  
        16.3.5  The Expansion and High Temperature of the Universe
    16.4  Vacuum Decay  
        16.4.1  Boiling of the Vacuum  
        16.4.2  Graceful Exit Problem  
        16.4.3  Slow Roll Inflation  
    16.5  Origin of Small Density Fluctuations  
    16.6  More About Inflation  
        16.6.1  Communication in the Inflating Universe  
        16.6.2  Energy Conservation
17 Testing Inflation: Predictions and Observations 255
17.1 Flatness 255
17.2 Density Fluctuations 256
17.3 Gravitational Waves 260
17.4 Open Questions 264

18 Eternal Inflation 269
18.1 Volume Growth and Decay 269
18.2 Random Walk of the Inflaton Field 271
18.3 Eternal Inflation via Bubble Nucleation 274
18.4 Bubble Spacetimes 275
18.5 Cosmic Clones 279
18.6 The Multiverse 281
18.7 Testing the Multiverse 284
  18.7.1 Bubble Collisions 284
  18.7.2 Black Holes from the Multiverse 285

19 String Theory and the Multiverse 291
19.1 What Is String Theory? 292
19.2 Extra Dimensions 294
19.3 The Energy Landscape 295
19.4 String Theory Multiverse 296
19.5 The Fate of Our Universe Revisited 297

20 Anthropic Selection 301
20.1 The Fine Tuning of the Constants of Nature 302
  20.1.1 Neutron Mass 302
  20.1.2 Strength of the Weak Interaction 303
  20.1.3 Strength of Gravity 303
  20.1.4 The Magnitude of Density Perturbations 303
20.2 The Cosmological Constant Problem 304
  20.2.1 The Dynamic Quantum Vacuum 304
  20.2.2 Fine-Tuned for Life? 305
20.3 The Anthropic Principle 307
20.4 Pros and Cons of Anthropic Explanations 309

21 The Principle of Mediocrity 313
21.1 The Bell Curve 313
21.2 The Principle of Mediocrity 314
21.3 Obtaining the Distribution by Counting Observers 315
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21.4 Predicting the Cosmological Constant</td>
<td>316</td>
</tr>
<tr>
<td></td>
<td>21.4.1 Rough Estimate</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>21.4.2 The Distribution</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>21.5 The Measure Problem</td>
<td>319</td>
</tr>
<tr>
<td></td>
<td>21.6 The Doomsday Argument and the Future of Our Civilization</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>21.6.1 Large and Small Civilizations</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>21.6.2 Beating the Odds</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>22 Did the Universe Have a Beginning?</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>22.1 A Universe that Always Existed?</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>22.2 The BGV Theorem</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>22.2.1 Where Does This Leave Us?</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>22.2.2 A Proof of God?</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>23 Creation of Universes from Nothing</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>23.1 The Universe as a Quantum Fluctuation</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>23.2 Quantum Tunneling from “Nothing”</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>23.2.1 Euclidean Time</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>23.3 The Multiverse of Quantum Cosmology</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td>23.4 The Meaning of “Nothing”</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td>24 The Big Picture</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td>24.1 The Observable Universe</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td>24.1.1 What Do We Know?</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td>24.1.2 Cosmic Inflation</td>
<td>344</td>
</tr>
<tr>
<td></td>
<td>24.2 The Multiverse</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>24.2.1 Bubble Universes</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>24.2.2 Other Disconnected Spacetimes</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>24.2.3 Levels of the Multiverse</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>24.2.4 The Mathematical Multiverse and Ockham’s Razor</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>24.3 Answers to the “Big Questions”</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>24.4 Our Place in the Universe</td>
<td>351</td>
</tr>
</tbody>
</table>

Appendix A 353

Further Reading 361

Index 365
Cosmology for the Curious
Perlov, D.; Vilenkin, A.
2017, XIV, 372 p. 202 illus., 63 illus. in color., Hardcover
ISBN: 978-3-319-57038-9