Contents

1 Operational Principles and Material Requirements for Coagulation/Flocculation and Adsorption-based Water Treatment Operations ... 1
 1.1 Introduction .. 1
 1.2 Operational Principles of Adsorption and Coagulation/Flocculation 2
 1.2.1 Adsorption Based Water Treatment Operations 2
 1.2.2 Coagulation/Flocculation Treatment Operations 4
 1.3 Material Requirements for Adsorption and Coagulation/Flocculation 5
 1.3.1 Adsorption Based Treatment Operation ... 5
 1.3.2 Coagulation/Flocculation Operations .. 6
 1.4 Polysaccharides—A Brief Overview ... 7
 1.5 Justification and the Theoretical Basis for the Use of Polysaccharides 7
 1.5.1 Adsorption Based Water Treatment Operations 7
 1.5.2 Coagulation/Flocculation Treatment Operations 8
 1.6 Conclusion .. 9
 References ... 10

2 Mechanistic Insight into the Coagulation Efficiency of Polysaccharide-based Coagulants .. 13
 2.1 Polysaccharides-A Brief Overview ... 13
 2.2 Polysaccharide-based Coagulants .. 14
 2.3 Overview of Active Coagulating Species in Polysaccharide-based Coagulants 15
 2.3.1 Chitosan ... 18
 2.3.2 Seed Gums ... 18
 2.3.3 Fruit Wastes .. 20
 2.3.4 Mucilage .. 21
4 Progress and Prospects of Polysaccharide Composites as Adsorbents for Water and Wastewater Treatment

4.1 Progress in Preparation of Polysaccharide-based Adsorbents

4.1.1 Crosslinked Polysaccharides

4.1.2 Polysaccharide Composites

4.1.3 Nanoporous Polysaccharide Composites

4.2 Treatment of Water and Wastewater

4.2.1 Pollutant Removal

4.2.2 Adsorption Mechanism

4.2.3 Regeneration Techniques

4.2.4 Polysaccharide-based Adsorbents Versus Other Adsorbents

4.3 Prospects and Challenges

4.4 Conclusion

References

5 Tapping into Microbial Polysaccharides for Water and Wastewater Purifications

5.1 Introduction

5.2 General Applications of Microbial Polysaccharides

5.3 Microbial Polysaccharide in Water and Wastewater Purification

5.4 Characterization of Microbial Polysaccharides for Water and Wastewater Purification

5.5 Morphologic and Functional Properties of Microbial Polysaccharides

5.5.1 Lipopolysaccharides (LPS)

5.5.2 Capsular Polysaccharides (CPS)

5.5.3 Exopolysaccharides (EPS)

5.6 Roles of Exopolysaccharides in Biofilm Formation

5.7 Microbial Biofilms in Water and Wastewater Treatment: The Dual Action

5.7.1 Antibiofilms in Water and Wastewater Treatment

5.8 Analytical Methods for Assessment of Microbial Polysaccharides in Water and Wastewater

5.8.1 Biological Oxygen Demand (BOD)

5.8.2 Chemical Oxygen Demand (COD)

5.8.3 Total Suspended Solids (TSS)

5.8.4 Nitrification and Denitrification (Ammonium Test)

5.9 Trends and Prospects of Microbial Polysaccharides in Water and Wastewater Purification

5.10 Conclusion

References
Polysaccharides as a Green and Sustainable Resources for Water and Wastewater Treatment
Oladoja, N.A.; Unuabonah, E.I.; AMUDA, O.S.; Kolawole, O.M.
2017, XIV, 110 p. 16 illus., Softcover
ISBN: 978-3-319-56598-9