Contents

1 Introduction ... 1
 1.1 A Brief Synopsis .. 1
 1.2 An Informal Description ... 6
 1.2.1 The Fisher Metric and the Amari–Chentsov Structure
 for Finite Sample Spaces 7
 1.2.2 Infinite Sample Spaces and Functional Analysis 8
 1.2.3 Parametric Statistics 10
 1.2.4 Exponential and Mixture Families from the Perspective
 of Differential Geometry 14
 1.2.5 Information Geometry and Information Theory 15
 1.3 Historical Remarks ... 17
 1.4 Organization of this Book 20

2 Finite Information Geometry .. 25
 2.1 Manifolds of Finite Measures 25
 2.2 The Fisher Metric .. 29
 2.3 Gradient Fields .. 39
 2.4 The m- and e-Connections 42
 2.5 The Amari–Chentsov Tensor and the α-Connections 47
 2.5.1 The Amari–Chentsov Tensor 47
 2.5.2 The α-Connections 50
 2.6 Congruent Families of Tensors 52
 2.7 Divergences .. 68
 2.7.1 Gradient-Based Approach 68
 2.7.2 The Relative Entropy 70
 2.7.3 The α-Divergence 73
 2.7.4 The f-Divergence ... 76
 2.7.5 The q-Generalization of the Relative Entropy 78
2.8 Exponential Families ... 79
 2.8.1 Exponential Families as Affine Spaces 79
 2.8.2 Implicit Description of Exponential Families 84
 2.8.3 Information Projections 91
2.9 Hierarchical and Graphical Models 100
 2.9.1 Interaction Spaces ... 101
 2.9.2 Hierarchical Models ... 108
 2.9.3 Graphical Models ... 112
3 Parametrized Measure Models 121
 3.1 The Space of Probability Measures and the Fisher Metric .. 121
 3.2 Parametrized Measure Models 135
 3.2.1 The Structure of the Space of Measures 139
 3.2.2 Tangent Fibration of Subsets of Banach Manifolds 140
 3.2.3 Powers of Measures ... 143
 3.2.4 Parametrized Measure Models and k-Integrability 150
 3.2.5 Canonical n-Tensors of an n-Integrable Model 164
 3.2.6 Signed Parametrized Measure Models 168
 3.3 The Pistone–Sempi Structure 170
 3.3.1 e-Convergence .. 170
 3.3.2 Orlicz Spaces .. 172
 3.3.3 Exponential Tangent Spaces 176
4 The Intrinsic Geometry of Statistical Models 185
 4.1 Extrinsic Versus Intrinsic Geometric Structures 185
 4.2 Connections and the Amari–Chentsov Structure 189
 4.3 The Duality Between Exponential and Mixture Families 201
 4.4 Canonical Divergences ... 210
 4.4.1 Dual Structures via Divergences 210
 4.4.2 A General Canonical Divergence 213
 4.4.3 Recovering the Canonical Divergence of a Dually Flat Structure .. 215
 4.4.4 Consistency with the Underlying Dualistic Structure .. 217
 4.5 Statistical Manifolds and Statistical Models 219
 4.5.1 Statistical Manifolds and Isostatistical Immersions ... 220
 4.5.2 Monotone Invariants of Statistical Manifolds 223
 4.5.3 Immersion of Compact Statistical Manifolds into Linear Statistical Manifolds 226
 4.5.4 Proof of the Existence of Isostatistical Immersions ... 228
 4.5.5 Existence of Statistical Embeddings 238
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Information Geometry and Statistics</td>
<td>241</td>
</tr>
<tr>
<td>5.1</td>
<td>Congruent Embeddings and Sufficient Statistics</td>
<td>241</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Statistics and Congruent Embeddings</td>
<td>244</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Markov Kernels and Congruent Markov Embeddings</td>
<td>253</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Fisher–Neyman Sufficient Statistics</td>
<td>261</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Information Loss and Monotonicity</td>
<td>263</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Chentsov’s Theorem and Its Generalization</td>
<td>268</td>
</tr>
<tr>
<td>5.2</td>
<td>Estimators and the Cramér–Rao Inequality</td>
<td>277</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Estimators and Their Bias, Mean Square Error, Variance</td>
<td>277</td>
</tr>
<tr>
<td>5.2.2</td>
<td>A General Cramér–Rao Inequality</td>
<td>281</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Classical Cramér–Rao Inequalities</td>
<td>286</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Efficient Estimators and Consistent Estimators</td>
<td>287</td>
</tr>
<tr>
<td>6</td>
<td>Fields of Application of Information Geometry</td>
<td>295</td>
</tr>
<tr>
<td>6.1</td>
<td>Complexity of Composite Systems</td>
<td>295</td>
</tr>
<tr>
<td>6.1.1</td>
<td>A Geometric Approach to Complexity</td>
<td>296</td>
</tr>
<tr>
<td>6.1.2</td>
<td>The Information Distance from Hierarchical Models</td>
<td>298</td>
</tr>
<tr>
<td>6.1.3</td>
<td>The Weighted Information Distance</td>
<td>307</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Complexity of Stochastic Processes</td>
<td>317</td>
</tr>
<tr>
<td>6.2</td>
<td>Evolutionary Dynamics</td>
<td>327</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Natural Selection and Replicator Equations</td>
<td>328</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Continuous Time Limits</td>
<td>333</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Population Genetics</td>
<td>336</td>
</tr>
<tr>
<td>6.3</td>
<td>Monte Carlo Methods</td>
<td>348</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Langevin Monte Carlo</td>
<td>350</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Hamiltonian Monte Carlo</td>
<td>351</td>
</tr>
<tr>
<td>6.4</td>
<td>Infinite-Dimensional Gibbs Families</td>
<td>354</td>
</tr>
</tbody>
</table>

Appendix A | Measure Theory | 361
Appendix B | Riemannian Geometry | 367
Appendix C | Banach Manifolds | 381
References | 387
Index | 397
Nomenclature | 403
Information Geometry
Ay, N.; Jost, J.; Le, H.V.; Schwachhöfer, L.
2017, XI, 407 p. 15 illus., Hardcover
ISBN: 978-3-319-56477-7