MesoBioNano (MBN) Explorer is a multi-purpose software package for advanced multiscale simulations of complex molecular structure and dynamics. It has many unique features and a wide range of applications in physics, chemistry, biology, materials science, and related industries. A variety of algorithms and interatomic potentials implemented in the program allow for the simulation of the structure and dynamics of a broad range of systems with the sizes from the atomic up to the mesoscopic scales. This provides the necessary molecular level quantitative details for the construction of the multiscale approaches in many areas of modern research. MBN EXPLORER is equipped with a special multi-task toolkit—the MBN STUDIO, which enables construction of input files, simple start of simulations, as well as visualization and analysis of the results obtained. The systematic description of the capabilities of these universal and powerful software packages and their applications in numerous areas of research are discussed in the book chapters.

This book attempts to present the state-of-the-art understanding of the mechanisms of clustering, self-organization, growth and structure formation in complex MBN systems on the basis of modern theoretical and computational physics approaches. Due to the large diversity of the systems and processes, the book does not even consider touching many of them. Instead, it is focused on the description of the key research methodologies that proved to be successful and led to the better understanding of some of the above-mentioned problems. These methodologies often rely on novel computational approaches, algorithms and high-performance computing, which are introduced and discussed via the exemplar case studies of clustering, self-organization and structure formation in various MBN systems.

The material is arranged as follows. In the introductory chapter we describe the field of MBN science, introduce main concepts and computation approaches related to the field, explain the basic features of MBN EXPLORER and MBN STUDIO. Chapter 2 presents a summary of main theoretical methods on which MBN EXPLORER is based, elaborates the key algorithms implemented in the package, outlines the basic ideas towards the multiscale description of MBN systems by means of kinetic Monte Carlo approach and the irradiation driven molecular dynamics. Chapter 3 introduces general aspects of the computational approach based on MBN EXPLORER,
the type of computational problems that can be addressed with the use of this
software as well as of the multi-functional toolkit MBN Studio.

In Chaps. 4–10 we present case studies of various MBN systems which can be
investigated by means of MBN Explorer. The results of computer simulations as
well as of theoretical studies of structure and dynamics of atomic and molecular
clusters of different materials are discussed in Chap. 4. Case studies of transforma-
tions of biomolecular systems at different thermal and biologically relevant
conditions as well as at various external stresses are presented in Chap. 5. In Chap.
6 we provide examples of nanostructured materials that can be studied with MBN
Explorer, in particular, with the tools based on the kinetic Monte Carlo algorithm
which allows simulation of multiscale phenomena in complex MBN systems.
Chapter 7 provides an introduction to the fascinating field of research related to
simulation of novel composite complex molecular systems, materials consisting of
components of different nature, ordered or disordered, materials interfaces.
Examples of the simulations of mechanical properties and thermal effects of a broad
variety of the materials are discussed in Chap. 8. MBN Explorer-based molecular
dynamics simulations of the nano- and microscale conformational, morphological
and phase transitions, proteins folding, nanoparticle and molecular diffusion, par-
ticle propagation through medium, collision and fragmentation processes, laser
induced acoustic desorption are elaborated in Chap. 9. Chapter 10 shows that MBN
Explorer is a very useful and powerful tool for the exploration of the challenging
interdisciplinary research problems arisen in connection with the development of
new technologies. The last Chap. 11 of the book gives an outlook for future
perspectives of MBN Explorer and MBN Studio, presents the main ideas and the
key directions for further development of the software, describes the ways for
obtaining the software together with a bunch of supplementary material.

The current release of MBN Explorer, which is the heritage of a long-standing
development, has been thoroughly tested, benchmarked and proven to be reliable in
calculations. We express our deep gratitude to Andrey Koshelev, Pavel Nikolaev,
Mikhail Panshenskov, Andrey Shutovich, Ilia Volkovets and Gennady B. Sushko
who contributed a lot to the development, construction and maintenance of the code
at different stages of its evolution. We acknowledge collaborative work with Victor
Bezchastnov, Catherine Bréchignac, Jean-Patrik Connerade, Veronika Dick,
Leonid G. Gerchikov, Kaspar Haume, Elsa Henriques, Adilah Hussien, Vadim K.
Ivanov, Chris Kexel, Andrey G. Lyalin, Nigel J. Mason, Oleg I. Obolensky,
Mikhail Panshenskov, Roman G. Polozkov, Stefan Schramm, [Klaus Schulten],
Gennady B. Sushko, Eugene Surdutovich, Pablo de Vera, Alexey V. Verkhovtsev,
Sergiy N. Volkov, Alexander Yakubovich together with whom many of the theo-
retical and numerical results presented in the book were obtained. We express our
gratitude to Alexey Verkhovtsev for his help in preparation of the textual and
graphical material presented in Sect. 9.2.

Frankfurt am Main, Germany
December 2016

Ilia A. Solov'yov
Andrey V. Korol
Andrey V. Solov'yov