Contents

1 Introduction .. 1
1.1 Implantable Biomedical Sensors 1
1.2 Non-invasive Sensors and Application Areas 2
1.3 Importance of Blood Pressure and Radial Pulse Diagnosis 3
1.4 Obesity as the 21st Century Plague 4

2 Development of Microsystems Multi Physics Investigation Methods ... 7
2.1 Application of Time Averaged Holography for Micro-Electro-Mechanical System Performing Non-linear Oscillations 7
2.1.1 Phenomenological Model of MEMS Cantilever 9
2.1.2 FEM Analysis of MEMS Cantilever Performing Chaotic Oscillations ... 15
2.1.3 The Structure of Digital Data Processing 16
2.1.4 The Mathematical Model of the Optical Measurement 18
2.1.6 Theoretical Substantiation of Possibilities for the Batcher Functioning ... 23
2.1.7 Experimental Analysis of the Spring 25
2.2.1 Concept of Indirect Method for Evaluation of Geometrical Parameters of Periodical Microstructure 28
2.2.2 Evaluation of Geometrical and Optical Parameters of Periodical Microstructure 29
2.2.3 Evaluation of Geometrical Parameters with High Aspect Ratio .. 34
2.2.4 Investigation of Microstructures of High Aspect Ratio 37
2.3 Polycarbonate as an Elasto-Plastic Material Model for Simulation of the Microstructure Hot Imprint Process 40
4.1.3 Radial Pulse Diagnosis .. 138
4.1.4 Radial Pulse Characteristics 139
4.2 Micro Membrane Design ... 141
4.2.1 Evaluation of Residual Stresses 141
4.2.2 Three Dimensional Finite Element Model
of Micro-membrane .. 143
4.2.3 Square Membrane Modeling 145
4.2.4 Circular Membrane Modeling 149
4.3 Micro Membrane Fabrication and Experimentation 152
4.3.1 Determination of Primary Data for Analyzed Objects 153
4.3.2 Deposition of Silicon Dioxide and Polysilicon 154
4.3.3 Formation of Micro Membranes 156
4.3.4 Results of Fabrication, Micro Hardness and Surface
Morphology Tests .. 164
4.3.5 Radial Pulse Analysis Through Application of Fabricated
Micro-objects .. 170
4.4 Modeling and Simulation of Radial Artery Under Influence
of Pulse .. 189
4.4.1 Computational Fluid Dynamics (CFD) 190
4.4.2 Characteristics of Arteries 191
4.4.3 Characteristics of Blood 191
4.4.4 Computational Fluid Structure Interaction (FSI) Modeling
for Blood Flow in Radial Artery 193
4.5 Moiré Method Application for Artery Surface Deformations
Analysis .. 198
4.5.1 Mathematical Representation of the Projected Image 199
4.5.2 Double-Exposure Projection Moiré 201
4.5.3 Two Dimensional Example 202
4.5.4 Application of Whole-Field Projection Moiré for the
Registration of Radial Blood Flow Pulses 203
4.6 Proposed Prototype of Wrist Watch-like Radial Pulse Analysis
Sensor ... 204
4.6.1 Prototype Design .. 204
4.6.2 Proposed Prototype Geometry 205
References .. 208
5 Microsystems for the Effective Technological Processes 211
5.1 Periodical Microstructures Based on Novel Piezoelectric Material
for Biomedical Applications 211
5.1.1 Synthesis and Formation of PZT Coating 213
5.1.2 Characterization Methods 215
5.1.3 Dynamic Investigations of PZT Coatings 215
5.1.4 Structure and Chemical Composition of PZT Composite
Material .. 218
5.1.5 Surface Morphology of Novel Cantilever Type Piezoelectric Elements .. 220
5.1.6 Piezoelectric Properties .. 222
5.1.7 Calculation of Module of Elasticity 225
5.1.8 Periodical Microstructure and SPR 227
5.2 Development of Complex 3D Microstructures Based on Computer Generated Hologram 230
5.2.1 The Creation and Formation of the Periodical Microstructure on the Basis of Computer Generated Hologram .. 236
5.2.2 Gerchberg-Saxton Algorithm for Design of Computer Generated Hologram 242
5.3 High-Frequency Excitation for Thermal Imprint of Microstructures into a Polymer 246
5.3.1 Methods of Microstructure Replication 246
5.3.2 Materials, Experimental Setup and Methodology 252
5.3.3 Investigation of Mechanical Hot Imprint Process 261
References .. 278
Biomechanical Microsystems
Design, Processing and Applications
Ostasevicius, V.; Janusas, G.; Palevicius, A.; Gaidys, R.; Jurenas, V.
2017, X, 282 p. 266 illus., 151 illus. in color., Hardcover
ISBN: 978-3-319-54848-7