1 Nonlinear Dynamics and Chaos: Applications in Meteorology and Atmospheric Physics ... 1

1.1 Introduction .. 1

1.2 New Science of Nonlinear Dynamics and Chaos 2
 1.2.1 Dynamical Systems and Fractal Space-Time Fluctuations .. 2
 1.2.2 Fractals in Pure Mathematics 4
 1.2.3 Fractal Fluctuations and Statistical Analysis 7
 1.2.4 Golden Mean and Self-similar, Fractal Geometrical Structures in Nature 8
 1.2.5 Fibonacci Sequence and Self-similar Structures 9
 1.2.6 Fivefold and Spiral Symmetry Associated with Fibonacci Sequence 11
 1.2.7 Quasicrystalline Structure: The Quasiperiodic Penrose Tiling Pattern 13
 1.2.8 Fractal Time Signals, and Power Laws 14
 1.2.9 Self-organized Criticality: Space-Time Fractals 16
 1.2.10 Turbulent (Chaotic) Fluctuations and Self-similar Structure Formation 17
 1.2.11 Self-similarity: A Signature of Identical Iterative Growth Process 19

1.3 Fractals and Self-organized Criticality in Meteorology and Atmospheric Physics 19
 1.3.1 Observed Structure of Atmospheric Flows and Signatures of Deterministic Chaos 21
 1.3.2 Limitations of Conventional Atmospheric Boundary Layer (ABL) Models 22
 1.3.3 Traditional Numerical Weather Prediction, Deterministic Chaos and Predictability 23
1.3.4 Current Techniques in Numerical Weather Prediction (NWP): Major Drawbacks ... 26
1.4 Applications of Nonlinear Dynamics and Chaos for Weather Prediction: Current Status .. 28
 1.4.1 Space-Time Cascade Model for Fractal Fluctuations in Atmospheric Flows ... 30
 1.4.2 General Systems Theory for Fractal Space-Time Fluctuations in Atmospheric Flows 31
1.5 Conclusions .. 32
References ... 33

2 Noise or Random Fluctuations in Physical Systems: A Review 41
 2.1 Introduction .. 42
 2.2 Statistical Methods for Data Analysis 43
 2.3 Statistical Normal Distribution 43
 2.4 Power Laws—History 45
 2.5 Power-Law Distributions and Complex Systems 46
 2.6 Power Laws, Scale Invariance and Self-similarity 47
 2.7 Power Laws, Self-similarity, and Fractals 48
 2.8 Power Laws, $1/f$ Noise, and Long-Term Memory 49
 2.9 Power Laws, Phase Transitions, and Critical Phenomena 50
 2.10 Power Laws and Self-organized Criticality 52
 2.11 Current Status of Power-Law Distributions 53
 2.12 Power-Law Relations (Bivariate) and Power-Law (Probability) Distributions ... 54
 2.13 Allometric Scaling and Fractals 54
 2.14 Fractals and the Golden Section in Plant Growth 55
 2.15 Turbulent Fluid Flow Structure, Fractals, and the Golden Ratio .. 56
 2.16 Fractal Space-Time and the Golden Section 56
 2.17 Power-Law (Probability) Distributions in Meteorological Parameters ... 57
 2.17.1 Power-Law (Probability) Distributions in Precipitation .. 59
 2.17.2 Power-Law (Probability) Distributions in Temperature .. 62
 2.17.3 Power-Law (Probability) Distributions in Quaternary Ice Volume Fluctuations 63
 2.17.4 Power-Law (Probability) Distributions in Atmospheric Pollution .. 63
 2.18 General Systems Theory Model for Self-organized Criticality in Atmospheric Flows .. 63
References ... 66
3 Self-organized Criticality: A Signature of Quantum-like Chaos in Atmospheric Flows .. 75
 3.1 Introduction ... 76
 3.2 Model Concepts and Predictions 79
 3.3 Deterministic Chaos and Statistical Normal Distribution 84
 3.4 Atmospheric Eddy Growth Process as Universal Period Doubling Route to Chaos ... 86
 3.4.1 Feigenbaum’s Constant a .. 87
 3.4.2 Feigenbaum’s Constant d .. 88
 3.4.3 Feigenbaum’s Constants’ Quantification of Universal Period Doubling Route to Chaos Eddy Growth Processes .. 90
 3.4.4 The Numerical Values of Feigenbaum’s Constants a and d ... 91
 3.5 Basic Concepts in Quantum Mechanics: Current Status........ 94
 3.5.1 Fractals and Quantum Theory 96
 3.5.2 Quantum Mechanics and String Theory 97
 3.5.3 Fluid Mechanics and Quantum Mechanics 97
 3.5.4 General Systems Theory for Fractal Space-Time Fluctuations and Quantum-like Chaos in Atmospheric Flows .. 98
 3.5.5 Model Predictions and the Interpretation of Quantum Mechanical Laws .. 99
 References .. 102

4 Universal Inverse Power-Law Distribution for Temperature and Rainfall in the UK Region ... 107
 4.1 Introduction ... 107
 4.2 Climate Variability .. 108
 4.3 General Systems Theory for Fractal Fluctuations 109
 4.4 Data .. 111
 4.5 Analysis .. 113
 4.6 Results and Discussion ... 115
 4.7 Conclusion ... 118
 References .. 118

5 Signatures of Universal Characteristics of Fractal Fluctuations in Global Mean Monthly Temperature Anomalies 121
 5.1 Introduction ... 122
 5.2 Scale-Free Theory for Power Laws with Fat, Long Tails 123
 5.3 Data and Analysis .. 125
 5.3.1 Data .. 125
Self-organized Criticality and Predictability in Atmospheric Flows
The Quantum World of Clouds and Rain
Selvam, A.M.
2017, XIX, 139 p. 24 illus., Hardcover
ISBN: 978-3-319-54545-5