Contents

3.4 Non-interactive Argument Based Approaches 18
 3.4.1 Pinocchio: Nearly Practical Verifiable Computation 19
 3.4.2 Geppetto: Versatile Verifiable Computation 19
 3.4.3 SNARKs for C: Verifying Program Executions
 Succinctly and in Zero Knowledge ... 20
 3.4.4 Succinct Non-interactive Zero Knowledge for a
 von Neumann Architecture ... 20
 3.4.5 Buffet: Efficient RAM and Control Flow in
 Verifiable Outsourced Computation ... 20
 3.4.6 ADSNARK: Nearly Practical and
 Privacy-Preserving Proofs on Authenticated Data 20
 3.4.7 Block Programs: Improving Efficiency of
 Verifiable Computation for Circuits with
 Repeated Substructures .. 21

References .. 21

4 Verifiable Computing from Fully Homomorphic Encryption 23
 4.1 Definitions for Fully Homomorphic Encryption 23
 4.2 Verifiable Computing Schemes Based on FHE 24
 4.2.1 Non-interactive Verifiable Computing:
 Outsourcing Computation to Untrusted Workers 24
 4.2.2 Improved Delegation of Computation Using Fully
 Homomorphic Encryption ... 25

References .. 25

5 Homomorphic Authenticators ... 27
 5.1 Definitions for Homomorphic Authenticators 27
 5.2 Verifiable Computing Schemes Based on MACs 30
 5.2.1 Verifiable Delegation of Computation on
 Outsourced Data ... 30
 5.2.2 Generalized Homomorphic MACs with Efficient
 Verification .. 30
 5.2.3 Efficiently Verifiable Computation on Encrypted Data 31
 5.3 Signature Based Verifiable Computing on Linear Functions 31
 5.3.1 Programmable Hash Functions Go
 Private: Constructions and Applications to
 (Homomorphic) Signatures with Shorter Public Keys 31
 5.4 Signature Based Verifiable Computing for Polynomial Functions 32
 5.4.1 Homomorphic Signatures with Efficient
 Verification for Polynomial Functions 32
 5.4.2 Algebraic (Trapdoor) One-Way Functions and
 Their Applications ... 32
 5.5 Signature Based Verifiable Computing Using
 Homomorphic Encryption .. 33

References .. 34
Privately and Publicly Verifiable Computing Techniques
A Survey
Demirel, D.; Schabhüser, L.; Buchmann, J.
2017, XII, 64 p., Softcover
ISBN: 978-3-319-53797-9