Contents

1 The Origins of Modern Physics .. 1
 1.1 Special Relativity ... 1
 1.2 Quantum Mechanics ... 3
 1.2.1 Axioms of Quantum Mechanics 8
 1.2.2 Quantum Information ... 9
 1.3 Quantum Statistical Mechanics .. 13
 1.3.1 Microcanonical Ensemble ... 13
 1.3.2 Canonical Ensemble ... 14
 1.3.3 Grand Canonical Ensemble 15
 1.4 Solved Problems ... 17

2 Second Quantization of Light .. 21
 2.1 Electromagnetic Waves ... 21
 2.1.1 Photons ... 23
 2.1.2 Electromagnetic Potentials and Coulomb Gauge 24
 2.2 Second Quantization of Light .. 27
 2.2.1 Fock versus Coherent States for the Light Field 30
 2.2.2 Linear and Angular Momentum of the Radiation Field 33
 2.2.3 Zero-Point Energy and the Casimir Effect 34
 2.3 Quantum Radiation Field at Finite Temperature 36
 2.4 Phase Operators ... 38
 2.5 Solved Problems ... 40

3 Electromagnetic Transitions .. 51
 3.1 Classical Electrodynamics ... 51
 3.2 Quantum Electrodynamics in the Dipole Approximation 53
 3.2.1 Spontaneous Emission .. 55
 3.2.2 Absorption ... 58
 3.2.3 Stimulated Emission .. 59
3.3 Selection Rules .. 60
3.4 Einstein Coefficients 62
 3.4.1 Rate Equations for Two-Level and Three-Level Systems .. 64
3.5 Life-Time and Natural Line-Width 66
 3.5.1 Collisional Broadening 67
 3.5.2 Doppler Broadening 68
3.6 Minimal Coupling and Center of Mass 69
3.7 Solved Problems 70

4 The Spin of the Electron 81
4.1 The Dirac Equation 81
4.2 The Pauli Equation and the Spin 85
4.3 Dirac Equation with a Central Potential 87
 4.3.1 Relativistic Hydrogen Atom and Fine Splitting 88
 4.3.2 Relativistic Corrections to the Schrödinger Hamiltonian .. 89
4.4 Solved Problems 91

5 Energy Splitting and Shift Due to External Fields 99
5.1 Stark Effect ... 99
5.2 Zeeman Effect ... 101
 5.2.1 Strong-Field Zeeman Effect 102
 5.2.2 Weak-Field Zeeman Effect 104
5.3 Solved Problems 106

6 Many-Body Systems 115
6.1 Identical Quantum Particles 115
6.2 Non-interacting Identical Particles 117
 6.2.1 Uniform Gas of Non-interacting Fermions 119
 6.2.2 Atomic Shell Structure and the Periodic Table of the Elements .. 121
6.3 Interacting Identical Particles 123
 6.3.1 Variational Principle 124
 6.3.2 Hartree for Bosons 125
 6.3.3 Hartree-Fock for Fermions 126
 6.3.4 Mean-Field Approximation 129
6.4 Density Functional Theory 131
6.5 Molecules and the Born-Oppenheimer Approximation 138
6.6 Solved Problems 140

7 Second Quantization of Matter 145
7.1 Schrödinger Field 145
7.2 Second Quantization of the Schrödinger Field 147
 7.2.1 Bosonic and Fermionic Matter Field 150
Quantum Physics of Light and Matter
Photons, Atoms, and Strongly Correlated Systems
Salasnich, L.
2017, XI, 244 p. 9 illus., Hardcover
ISBN: 978-3-319-52997-4