

Contents

1 A Condensed History of Chromatin Research 1
1.1 The Early Research on the Nucleus and Chromatin 1
1.2 Chromatin Bares Information: The Chromosomes and Genes Era (1870–1945) .. 4
1.3 Chromatin as a Decision Center of the Cellular Factory: The Golden Age of Molecular Biology and Electron Microscopy (1944–1980) .. 7
1.4 Chromatin as a Highly Structured System: Genomic Data, Localisation Methods and Modelling (1980 Onwards) 11
1.5 The Substratum of Chromatin Memory: Epigenetic Regulation ... 15
1.6 Fine-Scale Chromatin Architecture: A New Modelling Area 18
1.7 Conclusion ... 19
References ... 20

2 Investigating Chromatin Organisation Using Single Molecule Localisation Microscopy ... 25
2.1 Introduction ... 25
2.2 Single-Molecule Localization Microscopy: State-of-the-Art 27
2.2.1 Principle of SMLM 27
2.2.2 The Different SMLM Methods: A Historical Perspective .. 28
2.3 Application of SMLM to Image Chromatin 29
2.3.1 The Tao of SMLM 30
2.3.2 Importance of a Good Localization Precision in Order to Improve Resolution .. 30
2.3.3 Importance of High Signal Density to Improve Signal-to-Noise Ratio .. 31
2.3.4 Limitations of Previous Approaches to Study Chromatin Organisation .. 33
2.4 A Method to Reach High Labelling Density of Chromatin with SMLM .. 34
 2.4.1 Theory of DNA Dye Fluorescence 36
 2.4.2 Adapting Study of DNA Dyes Fluorescence to SMLM 36
 2.4.3 Optimization of the Photoconversion Process 37
 2.4.4 Optimization of the Buffer Conditions 38
 2.4.5 Multicolor Imaging with DNA 38
 2.4.6 A Summary of Various Approaches Used to Study DNA with SMLM ... 38
2.5 SMLM Microscope Design and Imaging Pipeline 41
 2.5.1 Sample Preparation for SMLM 42
 2.5.2 Imaging Medium 42
2.6 Data Acquisition for SMLM 43
2.7 Data Reconstruction for SMLM 44
 2.7.1 Spot Finding for SMLM 45
 2.7.2 Drift Correction Algorithms for SMLM 47
 2.7.3 Data Visualisation for SMLM 50
 2.7.4 Data Analysis for SMLM 51
2.8 Some Further Considerations for Localisation Microscopy 53
 2.8.1 Artefacts in Localisation Microscopy 53
 2.8.2 Difference Between Localisation Precision and Accuracy .. 55
2.9 Summary .. 56
References .. 57

3 Structure, Function and Dynamics of Chromatin 63
 3.1 Introduction .. 63
 3.2 The Hierarchical Organisation of Chromatin 65
 3.2.1 Chromosome Territories (Scale: 1000–2000 nm) 66
 3.2.2 Sub-chromosomal Domains (Scale: 500–1000 nm) ... 69
 3.2.3 Chromatin Domains (Scale: 100–400 nm) 70
 3.2.4 Chromatin Fibres (Scale: 30–100 nm) 74
 3.2.5 A Cluster-on-a-String Model to Describe the Fibre/Domain Transition 77
 3.2.6 Nucleosome Domains (Scale: 10–30 nm) 77
 3.2.7 Inference of Further Intermediate Chromatin Structures Using Local Chromatin Density Maps 82
 3.2.8 Hierarchical Organisation of Chromatin Structure ... 83
 3.3 The Dynamics of Chromatin ... 84
 3.3.1 Contrasting Arrangement of eu- and Hetero-Chromatin Inside the Cell Nucleus 84
 3.3.2 Classifier Identifies Intermediate States Between eu- and Heterochromatin Regions in Differentiated Cells 85
 3.3.3 Chromatin Dynamics During Differentiation of Mesenchymal Stem Cells 86
3.3.4 Dynamics of Chromatin upon Stress 87
3.3.5 Reversible Compaction of Chromatin Under Stress 89
3.3.6 Conclusion 92

3.4 The Function of Chromatin 94
3.4.1 Periphery of Chromatin Domains is Associated with High DNA Synthesis 94
3.4.2 Stress-Dependent Transcription at the Periphery of Chromatin Domains 96
3.4.3 Histone Modifications Allow to Further Dissect Chromatin into Active and Inactive Domains 96
3.4.4 SMLM Identifies Potential Sites of Transcription Machineries in the Mammalian Nucleus 99

3.5 Summary and Discussion 99
References ... 100

4 Periodic and Symmetric Organisation of Meiotic Chromosomes .. 105
4.1 Introduction .. 106
4.2 Organisation of the Synaptonemal Complex (SC) 109
 4.2.1 Superresolution Imaging of the SC Substructures 109
 4.2.2 Quantification of SC Substructures 109
 4.2.3 A Model for Organisation of SC 112
4.3 Periodic Organisation of Pachytene Chromosomes 113
 4.3.1 Superresolution Imaging of Pachytene Chromosomes Reveals Periodic Clusters of Chromatin... 114
 4.3.2 Quantification of Periodic Chromatin Clusters 114
4.4 Functional Organisation of Pachytene Chromosomes 116
 4.4.1 Rational 116
 4.4.2 Clustering Method Sorts Chromatin into Functional Epigenetic Compartments 118
 4.4.3 Centromeric Histone Mark (H3K9me3) Labels One End of the SC 119
 4.4.4 Repressive Histone Mark (H3K27me3) Shows Characteristic Periodic Clusters Along the SC ... 121
 4.4.5 Histone Mark (H3K4me3) Associated with Active Transcription Emanates Radially from the Axis of the SC ... 123
4.5 Structure and Dynamics of Meiotic Chromosomes 123
 4.5.1 Lampbrush-Like Structures in Mammalian Meiotic Chromosomes 123
 4.5.2 A Model for SC Spiralisation During the Zygote/Pachytene Transition 125
4.6 A Model of Spatial Distribution of Chromatin Around the SC 128
 4.6.1 A ‘Cluster-on-a-String’ Model for Spatial Distribution of Pachytene Chromosomes 129
4.7 Summary and Conclusion 129
References ... 131

5 Conclusions .. 135
5.1 Originality of the Work Presented Here 135
5.2 A General Methodology to Study Chromatin Architecture .. 136
5.3 Limitations of the Method and Possible Improvements 137
5.4 New Avenues for the Study of Chromatin Patterns
During Meiosis ... 138
5.5 Enlarging the Spectrum of Questions: Chromatin Organisation
as a Fundamental Principle of Nucleus Formation 138

Appendix A ... 139
Appendix B ... 145
Chromatin Architecture
Advances From High-resolution Single Molecule DNA Imaging
Prakash, K.
2017, LIII, 152 p. 101 illus., 50 illus. in color., Hardcover
ISBN: 978-3-319-52182-4