Contents

Preamble .. vii

Contents ... xi

Guide to contents .. xvii
 - Many reasons to write this book xix
 - Special relativity matters xxiii
 - Acceleration frontier of physics xxiv

Frequently used abbreviations xxv

Part I
Space-Time, Light and the Æther

1 **Space-Time** .. 3
 1.1 Time, a new 4th coordinate 3
 1.2 Measuring space and time 7
 1.3 Speed of light and the æther 9

2 **The Michelson-Morley Experiment** 21
 2.1 Earth’s motion and the æther 21
 2.2 Principle of relativity 23
 2.3 Cosmic microwave background frame of reference 27

3 **Material Bodies in Special Relativity** 29
 3.1 Time dilation, body contraction 29
 3.2 Reality of the Lorentz-FitzGerald body contraction . 31
 3.3 Path towards Lorentz coordinate transformations ... 39
 3.4 Highlights: how did relativity ‘happen’? 41
Part II Time Dilation, and Lorentz-Fitzgerald Body Contraction

4 Time Dilation .. 47
 4.1 Proper time of a traveler 47
 4.2 Relativistic light-clock 51

5 The Lorentz-FitzGerald Body Contraction 61
 5.1 Universality of time measurement 61
 5.2 Parallel light-clock .. 62
 5.3 Body contraction .. 63

Part III The Lorentz Transformation

6 Relativistic Coordinate Transformation 75
 6.1 Derivation of the form of the Lorentz coordinate transformation ... 75
 6.2 Explicit form of the Lorentz coordinate transformation 80
 6.3 The nonrelativistic Galilean limit 85
 6.4 The inverse Lorentz coordinate transformation 86

7 Properties of the Lorentz Coordinate Transformation 89
 7.1 Relativistic addition of velocities 89
 7.2 Aberration of light .. 98
 7.3 Invariance of proper time 104
 7.4 Two Lorentz coordinate transformations in sequence 106
 7.5 Rapidity .. 108

Part IV Measurement

8 Body Properties and Lorentz Coordinate Transformations 117
 8.1 Graphic representation of LT 117
 8.2 Simultaneity and time dilation 119

9 Different Methods of Measuring Spatial Separation 121
 9.1 Spatial separation measurement with the signal synchronized
 in the rest-frame of the observer S 122
 9.2 Spatial separation measurement with the signal synchronized
 in the rest-frame of a body S_0 123
 9.3 Spatial separation measurement due to illumination with light emitted
 in the rest-frame of the observer 125
 9.4 Train in the tunnel: is the tunnel contracted? 128
17 Tests of Special Relativity

17.1 Direct tests of special relativity
17.2 The Michelson-Morley experiment today
17.3 Tests of Lorentz coordinate transformation
17.4 Measurement of time

Part VII Collisions, Decays

18 A Preferred Frame of Reference

18.1 The center of momentum frame (CM-frame)
18.2 The LT to the CM-frame
18.3 Decay of a body in the CM-frame
18.4 Decay energy balance in CM-frame
18.5 Decay of a body in flight

19 Particle Reactions

19.1 Elastic two-body reactions
19.2 Compton scattering
19.3 Elastic bounce from a moving wall
19.4 Inelastic two-body reaction threshold
19.5 Energy available in a collision
19.6 Inelastic collision and particle production
19.7 Relativistic rocket equation

Part VIII 4-Vectors and 4-Force

20 4-Vectors in Minkowski Space

20.1 Lorentz invariants and covariant equations
20.2 The ‘position’ 4-vector
20.3 Metric in Minkowski space
20.4 Lorentz boosts as generalized rotation
20.5 Metric invariance
20.6 Finding new 4-vectors and invariants

21 4-Velocity and 4-Momentum

21.1 4-velocity u^μ
21.2 Energy-momentum 4-vector
21.3 Properties of Mandelstam variables
Contents

22 Acceleration and Relativistic Mechanics .. 303
 22.1 Small acceleration ... 303
 22.2 Definition of 4-acceleration ... 305
 22.3 Relativistic form of Newton’s 2nd Law 308
 22.4 The 4-force and work-energy theorem 311

Part IX Motion of Charged Particles

23 The Lorentz Force .. 317
 23.1 Motion in magnetic and electric fields 317
 23.2 EM-potentials and homogeneous Maxwell equations 325
 23.3 The Lorentz force: from fields to potentials 329
 23.4 Lorentz force from variational principle 330

24 Electrons Riding a Plane Wave .. 343
 24.1 Fields and potentials for a plane wave 343
 24.2 Role of conservation laws .. 347
 24.3 Surfing the plane wave .. 352

Part X Covariant Force and Field

25 Covariant Formulation of EM-Force 361
 25.1 Lorentz force in terms of 4-potential 361
 25.2 Covariant variation-principle 366
 25.3 Covariant Hamiltonian for action principle 374

26 Covariant Fields and Invariants .. 377
 26.1 EM-fields: relativistic form 377
 26.2 LT of electromagnetic fields and field invariants 379
 26.3 Constraints on field invariants 384
 26.4 Covariant form of the Lorentz force in terms of fields 386
 26.5 The Poynting force .. 390

Part XI Dynamics of Fields and Particles

27 Variational Principle for EM-Fields 399
 27.1 Maxwell equations with sources 399
 27.2 Covariant gauge condition ... 406
 27.3 Homogeneous Maxwell equations 412
 27.4 Energy, momentum and mass of the EM-field 418
<table>
<thead>
<tr>
<th>28</th>
<th>EM-Field Inertia</th>
<th>.. 423</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28.1 Field energy-momentum dynamics</td>
<td>.. 423</td>
</tr>
<tr>
<td></td>
<td>28.2 Mass of the electric field</td>
<td>.. 427</td>
</tr>
<tr>
<td></td>
<td>28.3 Limiting field/force electromagnetism</td>
<td>......................... 432</td>
</tr>
<tr>
<td>29</td>
<td>Afterword: Acceleration</td>
<td>.. 437</td>
</tr>
<tr>
<td></td>
<td>29.1 Can there be acceleration in SR?</td>
<td>.. 437</td>
</tr>
<tr>
<td></td>
<td>29.2 Evidence for acceleration</td>
<td>.. 438</td>
</tr>
<tr>
<td></td>
<td>29.3 Strong acceleration</td>
<td>.. 441</td>
</tr>
<tr>
<td></td>
<td>29.4 EM radiation from an accelerated particle</td>
<td>................. 446</td>
</tr>
<tr>
<td></td>
<td>29.5 EM radiation reaction force</td>
<td>.. 449</td>
</tr>
<tr>
<td></td>
<td>29.6 Landau-Lifshitz radiation force model</td>
<td>..................... 452</td>
</tr>
<tr>
<td></td>
<td>29.7 Caldirola radiation reaction model</td>
<td>.. 456</td>
</tr>
<tr>
<td></td>
<td>29.8 Unsolved radiation reaction</td>
<td>.. 457</td>
</tr>
<tr>
<td>Index</td>
<td>461</td>
<td></td>
</tr>
</tbody>
</table>
Relativity Matters
From Einstein's EMC2 to Laser Particle Acceleration and Quark-Gluon Plasma
Rafelski, J.
2017, XXV, 468 p. 85 illus., 63 illus. in color., Softcover
ISBN: 978-3-319-51230-3