Preface

The OpenSHMEM Workshop is the premier venue for presenting Partitioned Global Address Space (PGAS) research, particularly as it relates to OpenSHMEM. OpenSHMEM 2016 was the third event in the OpenSHMEM and Related Technologies workshop series. The workshop was organized by Oak Ridge National Laboratory and was held in Baltimore, Maryland, USA, and it was sponsored by ORNL, DoD, Intel, Mellanox, Cray, and SGI. The workshop was attended by participants from across academia, industry, and private and federal research organizations.

This year, the workshop focused on the role of OpenSHMEM in heterogeneous and hybrid environments. The two keynotes of the workshop included Steve Oberlin’s (NVIDIA CTO) talk on the role of OpenSHMEM in future GPU-based extreme scale systems, and James Sexton’s (IBM Fellow) talk on the usability of OpenSHMEM in data-centric architectures. Besides the keynote, the workshop included paper and vendor sessions as well as the OpenSHMEM committee meeting. The vendor session included talks from Intel, Cray, Mellanox, Allinea, and Paratools.

The paper session discussed a variety of concepts, including extending the OpenSHMEM API for future architectures, optimizing OpenSHMEM for current architectures, and enhancements to OpenSHMEM for the heterogeneous environments. All papers submitted to the workshop were peer-reviewed by the Technical Program Committee, which included members from universities, industry, and research labs. The Technical Program Committee members reviewed the papers with a very short turnaround time. Despite the short turnaround, each paper was reviewed by more than three reviewers, and in the end 14 full papers and 3 short papers were selected to be presented at the workshop.

This proceedings volume is a collection of papers presented at the workshop. The technical papers provided a variety of ideas for extending the OpenSHMEM specification and making it efficient for current and next-generation systems. This included active messages, non-blocking APIs, fault-tolerance capabilities, exploring implementation of OpenSHMEM using communication layers such as OFI and UCX, and implementing OpenSHMEM for heterogeneous architectures. The OpenSHMEM library is being explored as a high-performing communication layer for PGAS languages and Big Data frameworks, and those experiences from the developers were discussed at the OpenSHMEM workshop this year.

The third day of the OpenSHMEM workshop was focused on developing the OpenSHMEM specification. This year, like the year before, has been a very exciting year for the OpenSHMEM committee. The committee released OpenSHMEM version 1.3 in February 2016, and also a built a very active community that participates in the development of the specification. The OpenSHMEM meeting at the workshop is an annual and only face-to-face OpenSHMEM committee meeting. This was one of the most important meetings, as a set of rules and procedures were defined to be adopted by the OpenSHMEM committee. This included operation procedures for the
OpenSHMEM committee and participants, and the formalization of the process of development and ratification of the specification.

The general and program chairs would like to thank everyone who contributed to the organization of the workshop. In particular, we would like to thank the authors, Program Committee members, reviewers, session chairs, participants, and sponsors. We are grateful for the excellent support we received from our ORNL administrative staff and Daniel Pack, who maintained our workshop website.

November 2016

Neena Imam
Manjunath Gorentla Venkata
Swaroop Pophale
Tiffany Mintz
OpenSHMEM and Related Technologies. Enhancing OpenSHMEM for Hybrid Environments
Third Workshop, OpenSHMEM 2016, Baltimore, MD, USA, August 2 – 4, 2016, Revised Selected Papers
Gorentla Venkata, M.; Imam, N.; Pophale, S.; Mintz, T.M. (Eds.)
2016, X, 239 p. 102 illus., Softcover
ISBN: 978-3-319-50994-5