Contents

Part I Background Material

1 General Set-Up .. 3
 1.1 Varieties .. 3
 1.1.1 Linearising the Category of Varieties 3
 1.1.2 Divisors with Normal Crossings 4
 1.2 Complex Analytic Spaces 5
 1.2.1 Analytification 5
 1.3 Complexes .. 6
 1.3.1 Basic Definitions 6
 1.3.2 Filtrations 7
 1.3.3 Total Complexes and Signs 8
 1.4 Hypercohomology ... 9
 1.4.1 Definition 10
 1.4.2 Godement Resolutions 11
 1.4.3 Čech Cohomology 13
 1.5 Simplicial Objects 15
 1.6 Grothendieck Topologies 20
 1.7 Torsors ... 22
 1.7.1 Sheaf-Theoretic Definition 23
 1.7.2 Torsors in the Category of Sets 24
 1.7.3 Torsors in the Category of Schemes
 (Without Groups) 27

2 Singular Cohomology ... 31
 2.1 Relative Cohomology 31
 2.2 Singular (Co)homology 34
 2.3 Simplicial Cohomology 36
 2.4 The Künneth Formula and Poincaré Duality 41
 2.5 The Basic Lemma 45
2.5.1 Formulations of the Basic Lemma 45
2.5.2 Direct Proof of Basic Lemma I 47
2.5.3 Nori’s Proof of Basic Lemma II 49
2.5.4 Beilinson’s Proof of Basic Lemma II 52
2.5.5 Perverse Sheaves and Artin Vanishing 55
2.6 Triangulation of Algebraic Varieties 59
2.6.1 Semi-algebraic Sets 60
2.6.2 Semi-algebraic Singular Chains 66
2.7 Singular Cohomology via the h'-Topology 70
3 Algebraic de Rham Cohomology 73
3.1 The Smooth Case 73
3.1.1 Definition 73
3.1.2 Functoriality 76
3.1.3 Cup Product 77
3.1.4 Change of Base Field 79
3.1.5 Étale Topology 80
3.1.6 Differentials with Log Poles 81
3.2 The General Case: Via the h'-Topology 83
3.3 The General Case: Alternative Approaches 87
3.3.1 Deligne’s Method 87
3.3.2 Hartshorne’s Method 90
3.3.3 Using Geometric Motives 91
3.3.4 The Case of Divisors with Normal Crossings 94
4 Holomorphic de Rham Cohomology 97
4.1 Holomorphic de Rham Cohomology 97
4.1.1 Definition 97
4.1.2 Holomorphic Differentials with Log Poles 99
4.1.3 GAGA 100
4.2 Holomorphic de Rham Cohomology via the h'-Topology 102
4.2.1 h'-Differentials 102
4.2.2 Holomorphic de Rham Cohomology 103
4.2.3 GAGA 104
5 The Period Isomorphism 107
5.1 The Category(k, Q)–Vect 107
5.2 A Triangulated Category 108
5.3 The Period Isomorphism in the Smooth Case 109
5.4 The General Case (via the h'-Topology) 111
5.5 The General Case (Deligne’s Method) 113
Categories of (Mixed) Motives

- **6.1 Pure Motives** .. 117
- **6.2 Geometric Motives** 119
- **6.3 Absolute Hodge Motives** 124
- **6.4 Mixed Tate Motives** 129

Part II Nori Motives

- **7 Nori’s Diagram Category** 137
 - **7.1 Main Results** 137
 - **7.1.1 Diagrams and Representations** 137
 - **7.1.2 Explicit Construction of the Diagram Category** ... 139
 - **7.1.3 Universal Property: Statement** 140
 - **7.1.4 Discussion of the Tannakian Case** 144
 - **7.2 First Properties of the Diagram Category** 145
 - **7.3 The Diagram Category of an Abelian Category** ... 149
 - **7.3.1 A Calculus of Tensors** 150
 - **7.3.2 Construction of the Equivalence** 156
 - **7.3.3 Examples and Applications** 164
 - **7.4 Universal Property of the Diagram Category** 165
 - **7.5 The Diagram Category as a Category of Comodules** ... 168
 - **7.5.1 Preliminary Discussion** 168
 - **7.5.2 Coalgebras and Comodules** 169
- **8 More on Diagrams** 177
 - **8.1 Multiplicative Structure** 177
 - **8.2 Localisation** 188
 - **8.3 Nori’s Rigidity Criterion** 191
 - **8.4 Comparing Fibre Functors** 195
 - **8.4.1 The Space of Comparison Maps** 196
 - **8.4.2 Some Examples** 201
 - **8.4.3 The Description as Formal Periods** 204
- **9 Nori Motives** .. 207
 - **9.1 Essentials of Nori Motives** 207
 - **9.1.1 Definition** 207
 - **9.1.2 Main Results** 209
 - **9.2 Yoga of Good Pairs** 212
 - **9.2.1 Good Pairs and Good Filtrations** 212
 - **9.2.2 Čech Complexes** 213
 - **9.2.3 Putting Things Together** 216
 - **9.2.4 Comparing Diagram Categories** 218
9.3 Tensor Structure 220
 9.3.1 Collection of Proofs 225
9.4 Artin Motives 226
9.5 Change of Fields 228

10 Weights and Pure Nori Motives 233
 10.1 Comparison Functors 233
 10.2 Weights and Nori Motives 236
 10.2.1 André’s Motives 237
 10.2.2 Weights 238
 10.3 Tate Motives 241

Part III Periods

11 Periods of Varieties 247
 11.1 First Definition 247
 11.2 Periods for the Category $\langle k, \mathbb{Q} \rangle$–Vect 250
 11.3 Periods of Algebraic Varieties 253
 11.3.1 Definition 253
 11.3.2 First Properties 255
 11.4 The Comparison Theorem 256
 11.5 Periods of Motives 258

12 Kontsevich–Zagier Periods 261
 12.1 Definition ... 261
 12.2 Comparison of Definitions of Periods 265

13 Formal Periods and the Period Conjecture 273
 13.1 Formal Periods and Nori Motives 273
 13.2 The Period Conjecture 277
 13.2.1 Formulation in the Number Field Case 278
 13.2.2 Consequences 279
 13.2.3 Special Cases and the Older Literature 282
 13.2.4 The Function Field Case 284
 13.3 The Case of 0-Dimensional Varieties 287

Part IV Examples 289

14 Elementary Examples 291
 14.1 Logarithms .. 291
 14.2 More Logarithms 293
 14.3 Quadratic Forms 294
 14.4 Elliptic Curves 297
 14.5 Periods of 1-Forms on Arbitrary Curves 301
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Multiple Zeta Values</td>
<td>307</td>
</tr>
<tr>
<td>15.1 A ζ-value, the Basic Example</td>
<td>307</td>
</tr>
<tr>
<td>15.2 Definition of Multiple Zeta Values</td>
<td>310</td>
</tr>
<tr>
<td>15.3 Kontsevich’s Integral Representation</td>
<td>312</td>
</tr>
<tr>
<td>15.4 Relations Among Multiple Zeta Values</td>
<td>314</td>
</tr>
<tr>
<td>15.5 Multiple Zeta Values and Moduli Space of Marked Curves</td>
<td>320</td>
</tr>
<tr>
<td>15.6 Multiple Polylogarithms</td>
<td>321</td>
</tr>
<tr>
<td>15.6.1 The Configuration</td>
<td>322</td>
</tr>
<tr>
<td>15.6.2 Singular Homology</td>
<td>323</td>
</tr>
<tr>
<td>15.6.3 Smooth Singular Homology</td>
<td>326</td>
</tr>
<tr>
<td>15.6.4 Algebraic de Rham Cohomology and the Period Matrix of (X,D)</td>
<td>327</td>
</tr>
<tr>
<td>15.6.5 Varying the Parameters a and b</td>
<td>331</td>
</tr>
<tr>
<td>16 Miscellaneous Periods: An Outlook</td>
<td>337</td>
</tr>
<tr>
<td>16.1 Special Values of L-Functions</td>
<td>337</td>
</tr>
<tr>
<td>16.2 Feynman Periods</td>
<td>341</td>
</tr>
<tr>
<td>16.3 Algebraic Cycles and Periods</td>
<td>343</td>
</tr>
<tr>
<td>16.4 Periods of Homotopy Groups</td>
<td>347</td>
</tr>
<tr>
<td>16.5 Exponential Periods</td>
<td>349</td>
</tr>
<tr>
<td>16.6 Non-periods</td>
<td>350</td>
</tr>
<tr>
<td>Glossary</td>
<td>355</td>
</tr>
<tr>
<td>References</td>
<td>359</td>
</tr>
<tr>
<td>Index</td>
<td>369</td>
</tr>
</tbody>
</table>
Periods and Nori Motives
Huber, A.; Müller-Stach, S.
2017, XXIII, 372 p. 7 illus., Hardcover
ISBN: 978-3-319-50925-9