Contents

Part I Analytical Approach to Navigation

1 Terrestrial Navigation

1.1 On the Design of Conformal-Mercator and Non-conformal Charts and Plotting Sheets ... 3

1.2 Rhumb-Line or Loxodrome Navigation ... 7

1.3 Approximations of Loxodromes by Straight Lines on the Plotting Sheet ... 11

1.4 Applications and Numerical Examples ... 14

1.5 Gnomonic or Great-Circle Navigation ... 20

1.6 Numerical Examples and More Chart Projections 24

2 Astro-navigation

2.1 Lines of Position, Position Fix, Navigational Triangle and Fix by Computation ... 29

2.2 Celestial Sphere, Equatorial and Horizon System of Coordinates, Navigational Triangle and the Ecliptic Coordinate System ... 34

2.3 Conclusions and Numerical Examples ... 42

2.4 The Use of the Exact Equations for Finding the Position at Sea or Air by Employing Two or More Altitude Measurements Together with the Corresponding Measurements of Time ... 44

2.5 Conclusions and Numerical Examples ... 59

2.6 An Exact Method Based on Cartesian Coordinates and Vector Representations ... 63

2.7 Numerical Examples and Conclusions ... 73

2.8 On Approximate Solutions for Finding the Position at Sea or Air by Employing Two or More Altitude Observations ... 77

2.9 An Approximate Method Based on Matrices and the Least Square Approximation ... 91

2.10 Sumner’s Line of Assumed Position Method as Scientific Method ... 94
2.11 Numerical Example and Logarithmic Algorithm 97
2.12 How an Approximate Position at Sea or Air Can Be Found if an Approximate Value for the Azimuth or the Parallactic Angle Is Known in Addition to One Altitude 103
2.13 On the Effect of a Change in Time on the Altitude and Azimuth ... 110
2.14 How to Determine Latitude at Sea or Air Without the Use of a Clock .. 112
2.15 On Calculating the Interval Between Meridian Passage and Maximum Altitude and Finding Approximate Longitude and Latitude of a Moving Vessel, and Longitude by Equal Altitudes ... 116
2.16 To Find Latitude by Observing Polaris When Exact UTC and Longitude or an Approximation Is Available 125
2.17 The Most Probable Position When Only One LOP and DRP Are Known .. 128
2.18 How to Calculate the Time of Rising and Setting of Celestial Objects and How to Use the Measured Time of These Phenomena to Find Longitude .. 133
2.19 On the Identification of Stars and Planets 139
2.20 How to Navigate Without a Sextant 147
2.21 On Finding Time and Longitude at Sea, the Equation of Computed Time (ECT), and Being Completely Lost 149

3 Methods for Reducing Measured Altitude to Apparent Altitude ... 173
3.1 Navigational Refraction that Includes Astronomical Refraction for Low Altitude Observations 173
3.2 The Dip of the Horizon as a Function of Temperature and Pressure ... 185
3.3 Planetary Parallax and Semi-diameter of the Sun and Moon ... 191
3.4 Time and Timekeeping .. 196
3.5 On the Minimization Procedure for the Random Errors in Determining Altitude and Time 200

4 Some of the Instruments and Mathematics Used by the Navigator .. 209
4.1 Some of the Formulae and Mathematics Used by the Navigator ... 209
4.2 Some of the Instruments Used by the Navigator 230

Part II Formulae and Algorithms of Positional Astronomy

5 Elements of Astronomy as Used in Navigation 241
5.1 Some Basic Concepts Describing the Motion of the Earth Around the Sun ... 241
5.2 An Approximation to the Time of Transit of Aries at Greenwich and the Greenwich Hour Angle GHA of \(\Upsilon \) .. 244
5.3 The Right Ascension of RA of the Mean Sun, Mean Longitude, Mean Anomaly, Longitude of Perigee, Longitude of Epoch and Kepler’s Equation .. 245
5.4 The Equation of the Center, Equation of Time and True Longitude of the Sun .. 248
5.5 Numerical Examples and Other Concepts of Time 250
5.6 An Approximate Method for Finding the Eccentricity, the Longitude of the Perigee and the Epoch 253
5.7 Some Improved Formulae for the Equation of Time and Center .. 257

6 Qualitative Description: The Relevant Astronomical Phenomena 259
6.1 On the Change of the Elements of the Orbit with Time 259
6.2 The Concept of the Julian Date (JD) and Time Expressed by Julian Centuries (T) 260
6.3 The Elements of Our Orbit as a Function of the Time T Expressed by Polynomials 265
6.4 Qualitative Aspects of Precession and Nutation 266
6.5 The Concept of Proper Motion for Stars 268
6.6 Aberration ... 269
6.7 Annual Stellar Parallax, Definitions of Mean, True and Apparent Place of a Celestial Object 271

7 Quantitative Treatise of Those Phenomena 275
7.1 Effects of Precession on the RA and the Approximate Method of Declination .. 275
7.2 Rotational Transformations and Rigorous Formulae for Precession .. 277
7.3 Approximate Formulae for the RA \(\Theta \) and Declination \(\delta \) as the Result of Two Rotations Only 280
7.4 Effects of Nutation on the RA and Declination 282
7.5 Effects of Proper Motion on the RA and Declination \(\delta \) 285
7.6 Effects of Aberration on the RA and Declination \(\delta \) 287
7.7 Effects of Annual Parallax on the RA and Declination \(\delta \) 290
7.8 Calculating the Apparent RA and Declination \(\delta \), and the Equation of the Equinox 291

8 Ephemerides ... 295
8.1 Low Accuracy Ephemeris for the Sun, a Numerical Example .. 295
8.2 Intermediate Accuracy Ephemeris for the Sun 297
8.3 Low Accuracy Ephemeris for the Stars 300
8.4 Intermediate Accuracy Ephemeris for the Stars 303
8.5 Compressed Low Accuracy Ephemeris for the Sun and Stars for the Years 2014± 306
8.6 The Earth Viewed as a Gyro 308

Appendix A: Condensed Catalogue for the 57 Navigational Stars and Polaris 315
Appendix B: Greek Alphabet 317
Appendix C: Star Charts 319
References .. 321
Index .. 325
Astronavigation
A Method for Determining Exact Position by the Stars
Zischka, K.A.
2018, XIX, 328 p. 101 illus., 8 illus. in color., Softcover
ISBN: 978-3-319-47993-4