Contents

1 Generalization of Darcy’s Law: Non-Darcian Liquid Flow in Low-Permeability Media

1.1 Henry Darcy and His Law for Subsurface Fluid Flow 1
1.2 Relationship Between Water Flow Flux and Hydraulic Gradient in a Capillary Tube ... 2
1.3 Generalized Darcy’s Law for Water Flow in Low-Permeability Media ... 9
1.4 Correlation Between Permeability and the Threshold Gradient 16
1.5 Relationship Between Parameter a and Pore Size Distribution ... 20
1.6 Multidimensional and Anisotropic Cases ... 22
1.7 Case Studies ... 24
 1.7.1 Impact of Non-Darcian Flow on Performance of a Shale Repository for High-Level Nuclear Waste ... 24
 1.7.2 Influence of Non-Darcian Flow on Observed Relative Permeability ... 27
 1.7.3 Imbibition of Fracturing Fluids into Shale Matrix and a Methodology to Determine Relevant Parameters ... 30
 1.7.4 Non-Darcian Flow and Abnormal Liquid Pressure in Shale Formations ... 38
1.8 Concluding Remarks ... 40
References ... 41

2 Generalization of the Darcy-Buckingham Law: Optimality and Water Flow in Unsaturated Media

2.1 Edgar Buckingham and His Law for Water Flow in Unsaturated Soils ... 45
2.2 Unsaturated Flow Constitutive Models Under Local Equilibrium ... 49
2.2.1 Burdine Model for Relative Permeability and the Brooks-Corey Relation 49
2.2.2 Mualem Model for Relative Permeability and the van Genuchten Relation 52
2.3 Optimality Principles and the Euler-Lagrangian Equation .. 55
2.4 Generalization of the Darcy-Buckingham Law Based on an Optimality Condition 60
2.5 Verification with Field Observations of Unsaturated Water Flow in Soils 68
2.5.1 Field Experiments ... 68
2.5.2 Data Analysis Methods ... 71
2.5.3 Results and Discussion ... 72
2.6 The Active Fracture Model: An Equation for a Mountain ... 77
2.6.1 Yucca Mountain Project ... 78
2.6.2 The Active Fracture Model (AFM) .. 80
2.6.3 Verification of the AFM with Field Observations ... 86
2.6.4 Comparisons with Fracture Network Modeling Results ... 91
2.7 Optimality and Surface Water Flow ... 94
2.8 Concluding Remarks ... 97
Appendix: An Alternative Derivation of Eq. 2.48 Without Using the Lagrange Multiplier 98
References ... 100

3 Two-Part Hooke Model (TPHM): Theory, Validation and Applications .. 103
3.1 Robert Hooke and His Law for Elastic Deformation .. 104
3.2 Two-Part Hooke’s Model .. 105
3.2.1 TPHM for Isotropic Stress Condition .. 106
3.2.2 TPHM-Based Constitutive Relationships for Isotropic Stress Condition 109
3.2.3 TPHM for Anisotropic Stress Condition .. 124
3.2.4 TPHM-Based Constitutive Relationships for Anisotropic Stress Condition 135
3.2.5 Implementation of the TPHM in a Geomechanical Simulator 140
3.3 Fracture Deformation and Properties .. 143
3.3.1 Normal-Stress Dependence of Fracture Hydraulic Properties 143
3.3.2 Internal Swelling Stress ... 162
3.4 Coupled Hydro-mechanical Processes in a Dual-Continuum System ... 170
3.4.1 Governing Equations 173
3.4.2 Constitutive Relationships 178
3.4.3 An Application to the In Salah CO₂ Injection Project .. 181
3.5 A Case Study: The Use of the TPHM to Model a Mine-by Test at Mont Terri Site, Switzerland 185
3.5.1 Mine-by (MB) Test at the Mont Terri Site and Numerical Model 186
3.5.2 Simulated Results and Discussion 192
3.6 Concluding Remarks 200
References .. 200

4 A Thermodynamic Hypothesis Regarding Optimality Principles for Flow Processes in Geosystems 209
4.1 Two Optimality Principles and Their Inconsistency 210
4.2 A Thermodynamic Hypothesis 211
4.3 Consistence Between the Hypothesis and Flow Behavior in Geosystems 212
4.3.1 Water Flow in Saturated Porous Media 212
4.3.2 Water Flow in Unsaturated Porous Media 213
4.3.3 Flow Processes in a River Basin and the Earth-Climate System 214
4.3.4 A Further Discussion on the MEP 217
4.4 Consistence Between the Hypothesis and Darwin’s Evolution Theory 219
4.5 Calculation of Inelastic Deformation of Natural Rock 220
4.6 Concluding Remarks 222
References .. 223

5 Final Remarks: An “Unfinished” Book 225
Index .. 227
Fluid Flow in the Subsurface
History, Generalization and Applications of Physical Laws
Liu, H.H.
2017, XIII, 230 p. 91 illus., 64 illus. in color., Hardcover
ISBN: 978-3-319-43448-3