Contents

Part I Architectures of Artificial Neural Networks and Their Theoretical Aspects

1 **Introduction** ... 3
 1.1 Fundamental Theory 5
 1.1.1 Key Features 5
 1.1.2 Historical Overview 6
 1.1.3 Potential Application Areas 8
 1.2 Biological Neuron 9
 1.3 Artificial Neuron 11
 1.3.1 Partially Differentiable Activation Functions 13
 1.3.2 Fully Differentiable Activation Functions 15
 1.4 Performance Parameters 18
 1.5 Exercises ... 19

2 **Artificial Neural Network Architectures and Training Processes** 21
 2.1 Introduction .. 21
 2.2 Main Architectures of Artificial Neural Networks 21
 2.2.1 Single-Layer Feedforward Architecture 22
 2.2.2 Multiple-Layer Feedforward Architectures 23
 2.2.3 Recurrent or Feedback Architecture 24
 2.2.4 Mesh Architectures 24
 2.3 Training Processes and Properties of Learning 25
 2.3.1 Supervised Learning 26
 2.3.2 Unsupervised Learning 26
 2.3.3 Reinforcement Learning 26
 2.3.4 Offline Learning 27
 2.3.5 Online Learning 27
 2.4 Exercises ... 28
3 The Perceptron Network .. 29
 3.1 Introduction .. 29
 3.2 Operating Principle of the Perceptron 30
 3.3 Mathematical Analysis of the Perceptron 32
 3.4 Training Process of the Perceptron 33
 3.5 Exercises ... 38
 3.6 Practical Work 39

4 The ADALINE Network and Delta Rule 41
 4.1 Introduction .. 41
 4.2 Operating Principle of the ADALINE 42
 4.3 Training Process of the ADALINE 44
 4.4 Comparison Between the Training Processes of the Perceptron
 and the ADALINE 50
 4.5 Exercises ... 52
 4.6 Practical Work 52

5 Multilayer Perceptron Networks 55
 5.1 Introduction .. 55
 5.2 Operating Principle of the Multilayer Perceptron 56
 5.3 Training Process of the Multilayer Perceptron 57
 5.3.1 Deriving the Backpropagation Algorithm 58
 5.3.2 Implementing the Backpropagation Algorithm 69
 5.3.3 Optimized Versions of the Backpropagation
 Algorithm 71
 5.4 Multilayer Perceptron Applications 78
 5.4.1 Problems of Pattern Classification 78
 5.4.2 Functional Approximation Problems
 (Curve Fitting). 86
 5.4.3 Problems Involving Time-Variant Systems 90
 5.5 Aspects of Topological Specifications for MLP Networks 97
 5.5.1 Aspects of Cross-Validation Methods 97
 5.5.2 Aspects of the Training and Test Subsets 101
 5.5.3 Aspects of Overfitting and Underfitting Scenarios ... 101
 5.5.4 Aspects of Early Stopping 103
 5.5.5 Aspects of Convergence to Local Minima 104
 5.6 Implementation Aspects of Multilayer Perceptron Networks... 105
 5.7 Exercises ... 109
 5.8 Practical Work 1 (Function Approximation) 110
 5.9 Practical Work 2 (Pattern Classification) 112
 5.10 Practical Work 3 (Time-Variant Systems) 114
10 ART (Adaptive Resonance Theory) Networks 189
 10.1 Introduction .. 189
 10.2 Topological Structure of the ART-1 Network 190
 10.3 Adaptive Resonance Principle 192
 10.4 Learning Aspects of the ART-1 Network 193
 10.5 Training Algorithm of the ART-1 Network 201
 10.6 Aspects of the ART-1 Original Version 202
 10.7 Exercises ... 205
 10.8 Practical Work 205

Part II Application of Artificial Neural Networks in Engineering
and Applied Science Problems

11 Coffee Global Quality Estimation Using Multilayer Perceptron ... 209
 11.1 Introduction .. 209
 11.2 MLP Network Characteristics 209
 11.3 Computational Results 211

12 Computer Network Traffic Analysis Using SNMP Protocol
and LVQ Networks 215
 12.1 Introduction .. 215
 12.2 LVQ Network Characteristics 217
 12.3 Computational Results 217

13 Forecast of Stock Market Trends Using Recurrent Networks 221
 13.1 Introduction .. 221
 13.2 Recurrent Network Characteristics 222
 13.3 Computational Results 223

14 Disease Diagnostic System Using ART Networks 229
 14.1 Introduction .. 229
 14.2 Art Network Characteristics 230
 14.3 Computational Results 231

15 Pattern Identification of Adulterants in Coffee Powder
Using Kohonen Self-organizing Map 235
 15.1 Introduction .. 235
 15.2 Characteristics of the Kohonen Network 236
 15.3 Computational Results 239

16 Recognition of Disturbances Related to Electric Power Quality
Using MLP Networks 241
 16.1 Introduction .. 241
 16.2 Characteristics of the MLP Network 243
 16.3 Computational Results 244
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Trajectory Control of Mobile Robot Using Fuzzy Systems and MLP Networks</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>17.1 Introduction</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>17.2 Characteristics of the MLP Network</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>17.3 Computational Results</td>
<td>250</td>
</tr>
<tr>
<td>18</td>
<td>Method for Classifying Tomatoes Using Computer Vision and MLP Networks</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>18.1 Introduction</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>18.2 Characteristics of the Neural Network</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>18.3 Computational Results</td>
<td>258</td>
</tr>
<tr>
<td>19</td>
<td>Performance Analysis of RBF and MLP Networks in Pattern Classification</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>19.1 Introduction</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>19.2 Characteristics of the MLP and RBF Networks Under Analysis</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>19.3 Computational Results</td>
<td>260</td>
</tr>
<tr>
<td>20</td>
<td>Solution of Constrained Optimization Problems Using Hopfield Networks</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>20.1 Introduction</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>20.2 Characteristics of the Hopfield Network</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>20.3 Mapping an Optimization Problem Using a Hopfield Network</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>20.4 Computational Results</td>
<td>273</td>
</tr>
<tr>
<td>Appendix A</td>
<td></td>
<td>279</td>
</tr>
<tr>
<td>Appendix B</td>
<td></td>
<td>281</td>
</tr>
<tr>
<td>Appendix C</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>Appendix D</td>
<td></td>
<td>291</td>
</tr>
<tr>
<td>Appendix E</td>
<td></td>
<td>295</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>297</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>305</td>
</tr>
</tbody>
</table>
Artificial Neural Networks
A Practical Course
Liboni, L.H.B.; dos Reis Alves, S.F.
2017, XX, 307 p. 203 illus., 13 illus. in color., Hardcover
ISBN: 978-3-319-43161-1