Contents

1 Mammalian Polysacharides and Its Nanomaterials ... 1
 1.1 Introduction ... 1
 1.1.1 Polysaccharide-Based Nanoparticles .. 1
 1.2 Hydrophobically Modified Hyaluronic Acid .. 2
 1.3 Chemically Crosslinked Hyaluronic Acid Semi-IPN 4
 1.4 Photopolymerized Hyaluronic Acid IPNS .. 6
 1.5 Hydrophobically Modified Hyaluronic Acid .. 6
 1.6 Hydrophobically Modified Heparin .. 7
 1.7 Chondroitin Sulfate, Heparin and Hyaluronic Acid: pH/Ion-Responsive Networks .. 7
 1.8 Chondroitin Sulfate and Hyaluronic Acid: Electrical Field-Responsive Network .. 8
 1.8.1 Chondroitin Sulfate and Hyaluronic Acid ... 8
 1.9 Heparin & Hyaluronic Acid: Anti-Adhesivesurfaces 8
 1.9.1 Hyaluronic Acid ... 9
 1.9.2 Heparin .. 9
 1.10 Hyaluronic Acid and Chondroitin Sulfate (Polysaccharides of Human Origin): Biodegradable Polymers as Biomaterials ... 10
 1.10.1 Hyaluronic Acid ... 10
 1.10.2 Chondroitin Sulfate ... 12
 1.11 Natural-Origin Polymers as Carriers and Scaffolds for Biomolecules and Cell Delivery in Tissue Engineering Applications .. 13
 1.11.1 Hyaluronan ... 13
 1.11.2 Chondroitin Sulphate ... 14
 1.12 Rationale for the Use of HA in Drug Delivery .. 15
 1.13 Chondroitin Sulfate-Based Nanocarriers for Drug/Gene Delivery 17
 1.14 Chondroitin Sulphate: Colon-Specific Drug Delivery 19
1.15 Hyaluronan and Its Medical and Esthetic Applications 20
 1.15.1 Aging and Hyaluronan ... 21
1.16 Polysaccharides Based Composites ... 21
 1.16.1 Heparin-Based Composites ... 21
 1.16.2 Hyaluronan-Based Composites ... 22

2 Microbial Polysaccharides as Advance Nanomaterials 29
 2.1 Introduction .. 29
 2.2 Microbial Polysaccharides: General Applications 33
 2.3 Microbial Polysaccharides Production ... 34
 2.4 Biosynthesis of Polysaccharides ... 34
 2.5 Polysaccharides Recovery .. 34
 2.6 Microbial Polysaccharides vs Plant Polysaccharides 34
 2.7 Microbial Polysaccharides: General Features 35
 2.7.1 Xanthan ... 35
 2.7.2 Dextran .. 36
 2.7.3 Bacterial Alginate ... 41
 2.7.4 Scleroglucan ... 42
 2.7.5 Gellan ... 43
 2.7.6 Pullulan ... 43
 2.7.7 Curdlan ... 47
 2.7.8 Levan Polysaccharides ... 48
 2.7.9 Bacterial Polysaccharides .. 48
 2.7.10 Gellam, Guar and Xanthan Gums 49

3 Chitosan Based Nanomaterials and Its Applications .. 55
 3.1 Introduction .. 55
 3.2 Chitin .. 56
 3.3 Chitosan and Chitooligosaccharides ... 56
 3.4 Chitin Nanoparticles ... 57
 3.5 Chitosan Nanoparticles .. 58
 3.6 Chitooligosaccharide Nanoparticles ... 61
 3.7 Chitosan Applications .. 62
 3.7.1 Thermosensitive Gels ... 62
 3.7.2 Chitosan Nanoparticles and Gene Therapy: Chitosan-DNA Conjugated .. 62
 3.7.3 Chitosan in Gene Therapy: Bio-Conjugated Nano Applications .. 65
 3.7.4 Chitosan Based Amnioacid Polymer Conjugate 69
 3.7.5 Chitosan Based Quantum Dots ... 69
 3.7.6 Chitosan Based Ceramic Glass Nanoparticles 69
 3.7.7 Chitosan Based Metallic Nanoparticles 69
 3.7.8 Chitosan Based Cationic-Cationic Polymer: Macromolecule Grafted NPs.. 71
 3.7.9 Chitosan Based Functionalized Nanoparticles 71
 3.7.10 Chitosan Based Self Assembled/Amphiphillic NPs 72
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.11 Chitosan Based Coacervative Nanoparticles</td>
<td>73</td>
</tr>
<tr>
<td>3.7.12 Chemically Modified Chitosan NPs</td>
<td>74</td>
</tr>
<tr>
<td>3.7.13 Chitosan Based NPs for Poorly Soluble Drug</td>
<td>74</td>
</tr>
<tr>
<td>3.7.14 Chitosan Based Quaternized Nanoparticles</td>
<td>76</td>
</tr>
<tr>
<td>3.7.15 Chitosan Based Peg-Ylated Nanoparticles</td>
<td>77</td>
</tr>
<tr>
<td>3.7.16 Chitosan Based Glycolated Nanoparticles</td>
<td>77</td>
</tr>
<tr>
<td>3.7.17 Chitosan Based Nanoparticles</td>
<td>78</td>
</tr>
<tr>
<td>3.7.18 Fluorescent Nanoparticles (C Dots or Core-Shell Silica Nanoparticles)</td>
<td>80</td>
</tr>
<tr>
<td>3.7.19 Crosslinked Chitosan Polymers Based NPs</td>
<td>80</td>
</tr>
<tr>
<td>3.7.20 Solid Lipid Nanoparticles (SLNPs)</td>
<td>82</td>
</tr>
<tr>
<td>3.7.21 Synthetic Nanoparticle: Chitosan B-Cyclodextrin NPs</td>
<td>82</td>
</tr>
<tr>
<td>3.7.22 Lecithin Polymer Conjugates</td>
<td>83</td>
</tr>
<tr>
<td>3.7.23 Glycolylated Chitosan Based NPs</td>
<td>84</td>
</tr>
<tr>
<td>3.7.24 Galactosylated Chitosan Based NPs</td>
<td>84</td>
</tr>
<tr>
<td>3.7.25 Phytochemicals Based Chitosan Nanoparticles</td>
<td>84</td>
</tr>
<tr>
<td>3.7.26 Glycoisyalated Chitosan Nanoparticles: siRNA Chitosan Conjugate</td>
<td>84</td>
</tr>
<tr>
<td>3.7.27 Chitosan Based Microencapsulated NPs</td>
<td>85</td>
</tr>
<tr>
<td>3.7.28 Chitosan Based Monodisperse Nanoparticles</td>
<td>86</td>
</tr>
<tr>
<td>3.7.29 Improved Stable Conjugates</td>
<td>87</td>
</tr>
<tr>
<td>3.7.30 Chitosan Based Coreshell Nanoparticles</td>
<td>87</td>
</tr>
<tr>
<td>3.7.31 Chitosan Based Surface Modified Nanoparticles</td>
<td>88</td>
</tr>
<tr>
<td>3.7.32 Lipid Nanoparticles: Large Molecule Carrier</td>
<td>88</td>
</tr>
<tr>
<td>3.7.33 Chitosan Based Controlled Release Nanoparticles</td>
<td>88</td>
</tr>
<tr>
<td>3.7.34 Chitosan Based Bioadhesive Nanoparticles</td>
<td>89</td>
</tr>
<tr>
<td>3.8 Targeted Applications</td>
<td>89</td>
</tr>
<tr>
<td>3.8.1 Chitosan Bio-Targeted Applications</td>
<td>91</td>
</tr>
<tr>
<td>3.9 Miscelleneous Applications</td>
<td>94</td>
</tr>
<tr>
<td>3.9.1 Food Industry</td>
<td>94</td>
</tr>
<tr>
<td>3.9.2 Immobilization</td>
<td>97</td>
</tr>
<tr>
<td>3.9.3 Chitosan as a Drug</td>
<td>97</td>
</tr>
<tr>
<td>4 Advance Polymers and Its Applications</td>
<td>119</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>119</td>
</tr>
<tr>
<td>4.2 Polymers and Their Physically Crosslinked Hydrogels by Freeze–Thaw Technique</td>
<td>121</td>
</tr>
<tr>
<td>4.3 Smart Polymers: Controlled Delivery of Drugs</td>
<td>122</td>
</tr>
<tr>
<td>4.4 Auto-Associative Amphiphilic Polysac-Charides</td>
<td>124</td>
</tr>
<tr>
<td>4.5 Supramolecular Hydrogels: Potential Mode of Drug Delivery</td>
<td>127</td>
</tr>
<tr>
<td>4.6 “Click” Reactions in Polysaccharide Modification</td>
<td>128</td>
</tr>
<tr>
<td>4.7 Star Polymers: Advances in Biomedical Applications</td>
<td>130</td>
</tr>
<tr>
<td>4.8 Ordered Polysaccharides: Stable Drug Carriers</td>
<td>131</td>
</tr>
</tbody>
</table>
4.9 Interpenetrating Polymer Networks Polysaccharide Hydrogels for Drug Delivery and Tissue Engineering 134
4.10 Polysaccharide-Based Antibiofilm Surfaces.......................... 135
4.11 Polymers, and Their Complexes Used as Stabilizers
for Emulsions .. 139

5 Advanced Application of Natural Polysaccharides 147
5.1 Introduction .. 147
5.2 Biodegradable Polymers as Bio-Materials 148
5.2.1 Biodegradable Polymers ... 150
5.2.2 Hydrolytically Degradable Polymers as Biomaterials 151
5.3 Natural Polysaccharides as Carriers and Scaffolds
FOR Biomolecules and Cell Delivery in Tissue Engineering
Applications ... 151
5.4 Natural and Synthetic Polysaccharides for Wounds
and Burns Dressing ... 154
5.5 Present Research on the Blends of Natural and Synthetic
Polymers as New Biomaterials ... 155
5.6 Applications of Synthetic Polymers in Clinical Medicine 157
5.7 Current Progress on Gelatin NPS in Drug and Vaccine
Delivery .. 158
5.7.1 Drawbacks and Challenges .. 158
5.8 Current advancement of Chitosan-Based Polyelectrolyte
Complexes with Natural Polysaccharides for Drug Delivery 159
5.9 Relevance of Chitosan and Chitosan Derivatives
as Biomaterials ... 160
5.10 Hyaluronic Acid for Anticancer Drug
and Nucleic Acid Delivery .. 161
5.11 Chondroitin Sulfate-Based Nanocarriers
for Drug/Gene Delivery .. 164
5.12 Nanoengineering of Vaccines Using Natural Polysaccharides 165

6 Modern Polysaccharides and Its Current Advancements 171
6.1 Introduction .. 171
6.2 Polysaccharide Colloidal Particles Delivery Systems 172
6.3 Polysaccharides Scaffolds: for Bone Regeneration 172
6.4 Polysaccharides-Based Nanodelivery Systems 173
6.5 Polysaccharides and Its Recent Advances In Delivering 175
6.6 Unexplored Potentials of Polysaccharide Composites 176
6.7 Use of Microwave Irradiation in the Grafting Modification
of the Polysaccharides .. 177
6.8 Cationization of Polysaccharides for Promoting Greener
Derivatives with Many Commercial Applications 179
6.9 What Could Be Greener Than Composites
Made from Polysaccharides? ... 180
6.10 The Use of Mucoadhesive Polymers in Buccal Drug Delivery
6.10.1 New Generation of Mucoadhesive Polymers
6.10.2 Thiolated Mucoadhesive Polymers
6.10.3 Target-Specific, Lectin-Mediated Bioadhesive Polymers
6.10.4 Mucoadhesive Polysaccharides in the Design of Nano-Drug Delivery Systems for Non-Parenteral Administration
6.11 Polysaccharide Based Gene Transfection Agents
6.12 Polymeric Micro/Nanoparticles: Particle Design and Potential Vaccine Delivery Applications

7 Toxicity of Nanodrug Delivery Systems
7.1 Introduction
7.2 Nanotoxicology
7.3 In Vitro and In Vivo Tests to Assess Oral Nanocarriers Toxicity
7.4 Toxicity of Nanocarriers for Oral Delivery
Systems for Drug Delivery
Safety, Animal, and Microbial Polysaccharides
Bhatia, S.
2016, XI, 197 p. 50 illus., 3 illus. in color., Hardcover
ISBN: 978-3-319-41925-1