Contents

1 Introduction .. 1
 Arthur Pecher and Jens Peter Kofoed
 1.1 Introduction .. 1
 1.2 The Successful Product Innovation 2
 1.3 Sketching WECs and Their Environment 3
 1.4 Rules of Thumb for Wave Energy 5
 1.4.1 The Essential Features of a WEC 5
 1.4.2 Economic Rules of Thumb 6
 1.4.3 WEC Design Rules of Thumb 9
 1.4.4 Power Take-Off Rules of Thumb 12
 1.4.5 Environmental Rules of Thumb 13
 References ... 14

2 The Wave Energy Sector 17
 Jens Peter Kofoed
 2.1 Introduction ... 17
 2.2 Potential of Wave Energy 19
 2.3 Wave Energy Converters 22
 2.3.1 History .. 22
 2.3.2 Categorization of WEC’s 23
 2.3.3 Examples of Various WEC Types 24
 2.3.4 The Development of WECs 37
 2.4 Test Sites ... 39
 References ... 41

3 The Wave Energy Resource 43
 Matt Folley
 3.1 Introduction to Ocean Waves 43
 3.1.1 Origin of Ocean Waves 43
 3.1.2 Overview of the Global Wave Energy Resource 45

References... 47
Water Wave Mechanics

3.2.1 Definition and Symbols

3.2.2 Dispersion Relationship

3.2.3 Water Particle Path and Wave Motions

Characterisation of Ocean Waves and the Wave Climate

3.3.1 Introduction

3.3.2 Temporal, Directional and Spectral Characteristics of the Wave Climate

3.3.3 Spectral Representation of Ocean Waves

3.3.4 Characterization Parameters

3.3.5 Challenges in Wave Climate Characterisation

3.3.6 Coastal Processes

3.3.7 Case Study—Incident Wave Power

Measurement of Ocean Waves

3.4.1 Overview

3.4.2 Surface-Following Buoy

3.4.3 Sea-Bed Pressure Sensor

3.4.4 Acoustic Current Profiler

3.4.5 Land-Based and Satellite Radar

Modelling of Ocean Waves

3.5.1 Introduction

3.5.2 General Spectral Wave Models

3.5.3 Third Generation Spectral Wave Models

3.5.4 Grid Definition

Techno-Economic Development of WECs

4.1 Introduction

4.1.1 Continuous Evaluation of the WEC Potential

4.1.2 Overview of the Techno-Economic Development

4.2 The WEC Development Stages

4.3 Techno-Economic Development Evaluation

4.3.1 The Technology Readiness and Performance Level

4.3.2 The WEC Development Stages and the TRL Scale

4.3.3 The TRL-TPL R&D Matrix

4.3.4 Uncertainty Related to the TRL-TPL Matrix

4.3.5 Valuation of R&D Companies

4.4 Techno-Economic Development Strategies

4.4.1 R&D Strategy as TRL-TPL Trajectories

4.4.2 Extreme Cases of Techno-Economic Development Strategy

4.4.3 Efficient Techno-Economic Development

References
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Conclusion</td>
<td>97</td>
</tr>
<tr>
<td>4.6</td>
<td>Overview of Some of the Leading WECs</td>
<td>98</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>Economics of WECs</td>
<td>101</td>
</tr>
<tr>
<td>Ronan Costello and Arthur Pecher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>101</td>
</tr>
<tr>
<td>5.2</td>
<td>Power Is Vanity—Energy Is Sanity</td>
<td>102</td>
</tr>
<tr>
<td>5.3</td>
<td>Economic Decision Making</td>
<td>103</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Cash Flow Terminology</td>
<td>104</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Time Value of Money (and Energy)</td>
<td>105</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Economic Metrics</td>
<td>106</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Effect of Depreciation on Discounting</td>
<td>112</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Effect of Inflation on Discounting</td>
<td>112</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Setting the Discount Rate</td>
<td>113</td>
</tr>
<tr>
<td>5.3.7</td>
<td>Economic Decision Making—Which Metric to Use?</td>
<td>114</td>
</tr>
<tr>
<td>5.3.8</td>
<td>Expert Oversight and Independent Review</td>
<td>116</td>
</tr>
<tr>
<td>5.4</td>
<td>Economic Analysis in Technology R&D</td>
<td>117</td>
</tr>
<tr>
<td>5.5</td>
<td>Techno-Economic Assessment and Optimisation</td>
<td>118</td>
</tr>
<tr>
<td>5.6</td>
<td>WEC Cost-of-Energy Estimation Based on Offshore Wind Energy Farm Experience</td>
<td>119</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Introduction</td>
<td>119</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Definition of the Categories</td>
<td>120</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Wind Energy Project Case</td>
<td>121</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Wave Energy Case</td>
<td>124</td>
</tr>
<tr>
<td>5.6.5</td>
<td>Cost Reduction</td>
<td>131</td>
</tr>
<tr>
<td>5.6.6</td>
<td>Revenue and Energy Yield</td>
<td>133</td>
</tr>
<tr>
<td>5.7</td>
<td>Strategic Support Mechanisms</td>
<td>133</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>6</td>
<td>Hydrodynamics of WECs</td>
<td>139</td>
</tr>
<tr>
<td>Jørgen Hals Todalshaug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>139</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Wave Energy Absorption is Wave Interference</td>
<td>139</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Hydrostatics: Buoyancy and Stability</td>
<td>140</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Hydrodynamic Forces and Body Motions</td>
<td>143</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Resonance</td>
<td>146</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Oscillating Water Columns—Comments on Resonance Properties and Modelling</td>
<td>147</td>
</tr>
<tr>
<td>6.1.6</td>
<td>Hydrodynamic Design of a Wave Energy Converter</td>
<td>149</td>
</tr>
<tr>
<td>6.1.7</td>
<td>Power Estimates and Limits to the Absorbed Power</td>
<td>153</td>
</tr>
<tr>
<td>6.1.8</td>
<td>Controlled Motion and Maximisation of Output Power</td>
<td>156</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>157</td>
</tr>
</tbody>
</table>
7 Mooring Design for WECs .. 159
Lars Bergdahl

7.1 Introduction .. 159
7.1.1 General .. 159
7.1.2 Mooring Design Development Overview 160
7.1.3 Wave-Induced Forces on Structures 162
7.1.4 Motions of a Moored Device in Waves 162

7.2 Metocean Conditions .. 162
7.2.1 Combinations of Environmental Conditions 162
7.2.2 Design Wave Conditions 163
7.2.3 Environmental Data at DanWEC 165
7.2.4 Example Design Conditions 166

7.3 Estimation of Environmental Forces 166
7.3.1 Overview and Example Floater Properties 166
7.3.2 Mean Wind and Current Forces 167
7.3.3 Wave Forces .. 169
7.3.4 Summary of Environmental Forces on Buoy 178

7.4 Mooring System Static Properties 179
7.4.1 Example ... 179
7.4.2 Catenary Equations 180
7.4.3 Mean Excursion .. 182

7.5 Alternative Design Procedures 183
7.5.1 Quasi-Static Design 183
7.5.2 Dynamic Design .. 187
7.5.3 Response-Based Analysis 188

7.6 Response Motion of the Moored Structure 189
7.6.1 Equation of Motion 189
7.6.2 Free Vibration of a Floating Buoy in Surge 190
7.6.3 Response to Harmonic Forces 191
7.6.4 Response Motion in Irregular Waves 194
7.6.5 Equivalent Linearized Drag Damping 196
7.6.6 Second-Order Slowly Varying Motion 197
7.6.7 Wave Drift Damping 198
7.6.8 Combined Maximum Excursions 198

7.7 Conclusions ... 199

References ... 200

8 Power Take-Off Systems for WECs 203
Amélie Tétu

8.1 Introduction, Importance and Challenges 203
8.2 Types of Power Take-Off System 205
8.2.1 Overview .. 205
8.2.2 Air Turbines .. 206
8.2.3 Hydraulic Converters 210
Handbook of Ocean Wave Energy
Pecher, A.; Kofoed, J.P. (Eds.)
2017, XXI, 287 p. 152 illus., 85 illus. in color., Hardcover
ISBN: 978-3-319-39888-4