Contents

1 The Challenge of Effective Daylighting

1.1 Introduction .. 1
1.2 Effective Daylighting as a Central Driver for Low-Energy, Low-Carbon Buildings 2
1.3 Fenestration Design Impacts on Electric Load Shape and Demand Response 6
1.4 Daylighting Impacts on Human Health, Well-Being and Performance 8
1.5 Design for the Next Century 12
1.6 Challenges of Time and Scale 17
1.7 Defining Effective Daylighting 18
1.8 An Agenda for Effective Daylighting 19
 1.8.1 From Compliance-Based to Performance-Based Design .. 20
 1.8.2 From Static and Unresponsive to Context-Aware and Adaptive Systems 23
 1.8.3 From Theory to Feedback, Validation and Learning .. 27

2 The Role of Metrics in Performance-Based Design

2.1 Introduction .. 33
2.2 Optimizing Energy in High-Performance Daylit Buildings ... 34
 2.2.1 From Daylight “Harvesting” to Daylight Autonomous Buildings ... 37
2.3 From Static to Dynamic, Climate-Based Daylighting Metrics .. 39
 2.3.1 Climate-Based Daylighting Performance Metrics ... 43
 2.3.2 Limitations and Future Directions of Climate-Based Daylight Modeling 49
2.4 Non-visual Effects of Light .. 51
 2.4.1 Daylighting for Circadian Entrainment 54
 2.4.2 Field-Based Measurement Practices 58
 2.4.3 Developing Circadian Daylight Metrics
 and Performance Criteria 59
 2.4.4 Limitations and Future Directions of Circadian
 Daylighting .. 63
2.5 Visual Comfort .. 64
 2.5.1 Glare .. 64
 2.5.2 Daylight Glare Metrics 68
 2.5.3 Application of Glare Metrics Using HDR Images 70
 2.5.4 Dynamic Glare Evaluation 71
 2.5.5 Frequency and Magnitude of Glare 74
 2.5.6 View-Direction Dependent Glare Evaluation 76
 2.5.7 Limitations and Future Directions of Visual Comfort
 Evaluation ... 78
2.6 Visual Connection to the Outdoors 79
 2.6.1 Window Size and Aperture Configuration 82
 2.6.2 Distance of Occupants from Windows 84
 2.6.3 Provision of Multiple Views 85
 2.6.4 View Content ... 86
 2.6.5 Visual Transparency and Openness Factor 87
 2.6.6 Visual Clarity .. 89
 2.6.7 Limitations and Future Directions Related to View 90
2.7 Solar Control and Thermal Comfort 91
 2.7.1 Limitations and Future Directions of Solar/Thermal
 Comfort Evaluation 95
2.8 Conclusions .. 95
References .. 96

3 Innovative Daylighting Systems 101
 3.1 Introduction .. 101
 3.2 From Simple to Complex Fenestration Systems 102
 3.2.1 Optical Light Redirecting Systems (OLS) 106
 3.2.2 Angular Selective Glazing Systems 111
 3.2.3 Ceramic Frits 118
 3.2.4 Building Integrated Photovoltaics (BIPV) 123
 3.3 From Static to Dynamic Systems 126
 3.3.1 Granular Design 127
 3.3.2 Dynamic “Smart” Glazings 130
 3.3.3 Dynamic Light Redirecting Systems 135
 3.4 From Integrated to Interconnected Systems:
 Internet-of-Things-Enabled Perimeter Systems 138
5.7 Nordea Bank Headquarters .. 240
 5.7.1 Integrated Daylighting Design 241
 5.7.2 Facade Systems .. 243
References .. 249

6 Validating Performance from the Perspective of End Users 251
 6.1 Introduction .. 251
 6.2 Closing the Loop, Feedback and Learning 251
 6.2.1 From Universal Design to Learned Guidance and
 Adaptive Systems .. 252
 6.3 Adding Humans to the Loop—A User-Interface
 Design Problem .. 253
 6.3.1 From the Laboratory to the Field 253
 6.3.2 Enabling Buildings as Living Laboratories 254
 6.3.3 Validating Daylighting Assumptions in Green Building
 Rating Systems ... 257
 6.3.4 Modeling Occupant Perception of Available Daylight. ... 259
 6.3.5 Enabling Multi-sensory Investigation 260
 6.4 Scaling up Occupant-Centered Evaluation 261
 6.5 Learning from Occupant Shade Use and Personal
 Modifications .. 265
 6.6 The Value of User Interfaces in Environmentally Responsive
 Architecture .. 267
 6.7 Conclusions ... 268
References .. 269
Effective Daylighting with High-Performance Facades
Emerging Design Practices
Konis, K.; Selkowitz, S.
2017, XVI, 269 p. 233 illus., 183 illus. in color., Hardcover
ISBN: 978-3-319-39461-9