Contents

1 Introduction ... 1
 1.1 Natural Products .. 1
 1.1.1 Polyketides and Non-ribosomal Peptides 2
1.2 Polyketide Synthases .. 3
 1.2.1 Polyketide Biosynthesis 4
 1.2.2 Polyketide Synthase Classification 7
 1.2.3 Structure and Mechanisms of PKS Domains 17
 1.2.4 Architecture of the ‘Megasynthase’ 28
 1.2.5 In Vitro Techniques for Studying PKSs 29
1.3 Mass Spectrometry .. 31
 1.3.1 Ionisation Methods ... 31
 1.3.2 Mass Analysers ... 37
References .. 43

2 Materials and Methods .. 49
 2.1 Materials .. 49
 2.1.1 Instruments .. 49
 2.1.2 Buffers and Reagents ... 51
 2.1.3 Consumables .. 53
 2.2 Methods ... 54
 2.2.1 Protein Expression and Purification 54
 2.2.2 Synthesis of N-Acetylcysteamine Thioesters 57
 2.2.3 Ketosynthase Acylation Assay 58
 2.2.4 Synthesis of Acyl–Acyl Carrier Proteins 58
 2.2.5 Acyl-ACP Ketosynthase Loading Assay 60
 2.2.6 PedC/PedD(R97Q) Hydrolase Assays 60
 2.2.7 Acyltransferase Extender Unit Specificity Assays 60
 2.2.8 PedD Malonyl Loading and Unloading of ACP 60
 2.2.9 Ketosynthase Elongation Assay 61
 2.2.10 Monitoring Acyl-Transfer in PsyA ACP1-KS1 62
2.2.11 Sample Preparation for Mass Spectrometry 64
2.2.12 Pulling and Gold-Coating Nanospray Capillaries 65
2.2.13 Mass Spectrometry Instrument Parameters 66
2.2.14 Calculation of Acyl-KS Concentrations Using MS 66
2.2.15 Structure Prediction 68
References 68

3 Substrate Specificity of Ketosynthase Domains Part I: β-Branched Acyl Chains 71
3.1 Introduction 71
3.2 Results and Discussion 73
 3.2.1 Purification of Ketosynthase Domains 73
 3.2.2 Substrate Specificity of BaeL KS5 74
 3.2.3 Substrate Specificity Profiles: Psy KS1, KS2, and KS3 77
 3.2.4 Homology Modelling of KS Domains 79
 3.2.5 Substrate Specificity of BaeL KS5(M237A) 82
 3.2.6 Analysis of the X-Cys Position 82
3.3 Conclusions 85
References 86

4 Substrate Specificity of Ketosynthase Domains Part II: Amino Acid-Containing Acyl Chains 87
4.1 Introduction 87
4.2 Results and Discussion 88
 4.2.1 Purification of Ketosynthase Domains 88
 4.2.2 Substrate Specificity of BaeJ KS1 88
 4.2.3 Analysis of X-Cys Position 93
 4.2.4 Homology Modelling of BaeJ KS1 94
 4.2.5 Substrate Specificity of BaeJ KS1(N206A) 96
 4.2.6 Michaelis–Menten Treatment of WT KS1
 and KS1(N206A) 98
 4.2.7 Substrate Specificity of BaeJ KS1(M268A) and (L450A) 101
4.2.8 Effect of Salt on Dimerisation and Acylation 101
4.3 Conclusions 103
References 105

5 Synthesis of Acyl-Acyl Carrier Proteins and Their Use in Studying Polyketide Synthase Enzymology 107
5.1 Introduction 107
 5.1.1 The Phosphopantetheine Ejection Assay 108
 5.1.2 PedC: Acyltransferase-like Proofreading Domain 109
5.2 Results 110
 5.2.1 Purification of PsyA ACP3(Δ37,38) 110
 5.2.2 Synthesis of Acyl-ACPs 111
 5.2.3 Loading of KS Domains Using Acyl-ACPs 112
 5.2.4 Purification of Acyl Hydrolase PedC 115
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.5</td>
<td>Hydrolysis of Acyl-ACPs By PedC</td>
<td>116</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Purification of WT PedD and PedD(R97Q)</td>
<td>119</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Extender Unit Specificity of PedD</td>
<td>119</td>
</tr>
<tr>
<td>5.2.8</td>
<td>PedD-Catalysed Malonly-Loading of ACP</td>
<td>121</td>
</tr>
<tr>
<td>5.2.9</td>
<td>Modelling and Sequence Analysis of PedC and PedD</td>
<td>123</td>
</tr>
<tr>
<td>5.2.10</td>
<td>Examining the Activity of PedD(R97Q)</td>
<td>124</td>
</tr>
<tr>
<td>5.3</td>
<td>Conclusions</td>
<td>128</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>6</td>
<td>Substrate Specificity of Ketosynthase Domains Part III:</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>131</td>
</tr>
<tr>
<td>6.2</td>
<td>Results and Discussion</td>
<td>131</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Synthesis of Malonyl-ACP</td>
<td>133</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Synthesis of Alkyl-ACP</td>
<td>134</td>
</tr>
<tr>
<td>6.2.3</td>
<td>MS/MS Elongation Assay: Proof of Principle</td>
<td>135</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Calibration of Internal Standard to Acyl-ACP</td>
<td>136</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Assessing Beta-Keto-ACP Stability</td>
<td>137</td>
</tr>
<tr>
<td>6.2.6</td>
<td>KS Elongation Specificity Profiles</td>
<td>139</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Monitoring Acyl Transfer Within PsyA ACP1-KS1</td>
<td>142</td>
</tr>
<tr>
<td>6.2.8</td>
<td>Reversible Transfer of Acyl Chains in PsyA ACP1-KS1</td>
<td>145</td>
</tr>
<tr>
<td>6.3</td>
<td>Conclusions</td>
<td>150</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>153</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
<td>155</td>
</tr>
</tbody>
</table>