Contents

Part I Modes of Approximation

1 Contributions of Rabi Bhattacharya to the Central Limit Theory and Normal Approximation
 Peter Hall
 1.1 Rates of Convergence in the Central Limit Theorem 3
 1.2 Asymptotic Expansions ... 5
 1.3 Influence on Statistics .. 6
 1.4 Past, Present, and Future ... 8
 References ... 10

2 Asymptotic Expansions for Stochastic Processes
 Nakahiro Yoshida
 2.1 Introduction .. 15
 2.2 Refinements of Central Limit Theorems 16
 2.2.1 Rate of Convergence of the Central Limit Theorem 16
 2.2.2 Cramér-Edgeworth Expansion .. 17
 2.2.3 Smoothing Inequality ... 18
 2.2.4 Applications to Statistics .. 19
 2.3 Asymptotic Expansion for Mixing Processes 19
 2.4 Asymptotic Expansion for Martingales ... 21
 2.4.1 Martingale Central Limit Theorems 21
 2.4.2 Berry-Esseen Bounds .. 22
 2.4.3 Asymptotic Expansion of Martingales 23
 2.5 Non-ergodic Statistics and Asymptotic Expansion........................... 24
 2.5.1 Non-central Limit of Estimators in Non-ergodic Statistics 24
 2.5.2 Non-ergodic Statistics and Martingale Expansion 25
 References ... 26

3 An Introduction to Normal Approximation
 Qi-Man Shao
 3.1 Introduction ... 33
 3.2 Asymptotic Expansions ... 33
 3.3 Normal Approximation by Stein’s Method 36
 3.4 Strong Gaussian Approximation ... 37
 References ... 39
4 Reprints: Part I .. 41
 R.N. Bhattacharya and Coauthors
 4.1 “Berry-Essen bounds for the multi-dimensional central
 limit theorem” .. 42
 4.2 “Rates of weak convergence and asymptotic expansions
 for classical central limit theorems” 46
 4.3 “On errors of normal approximation” 66
 4.4 “Refinements of the multidimensional central limit theorem
 and applications” ... 81
 4.5 “On the validity of the formal Edgeworth expansion” 109

Part II Large Time Asymptotics for Markov Processes I: Diffusion

5 Martingale Methods for the Central Limit Theorem 131
 S.R. Srinisava Varadhan
 5.1 Introduction .. 131
 5.2 Methods for Proving the CLT 131
 5.3 A Bit of History ... 134
 References ... 135

6 Ergodicity and Central Limit Theorems for Markov Processes 137
 Thomas G. Kurtz
 6.1 Introduction .. 137
 6.2 Ergodicity for Markov Processes 140
 6.2.1 Harris Recurrence 145
 6.2.2 Conditions without Harris Recurrence 148
 6.3 Central Limit Theorems 149
 References ... 153

7 Reprints: Part II .. 155
 R.N. Bhattacharya and Coauthors
 7.1 “Criteria for recurrence and existence of invariant measures
 for multidimensional diffusions” 156
 7.2 “On the functional central limit theorem and the law of the
 iterated logarithm for Markov processes” 170
 7.3 “A central limit theorem for diffusions with periodic coefficients” 188
 7.4 “Refinements of the multidimensional central limit theorem
 and applications” ... 201
 7.5 “Stability in distribution for a class of singular diffusions” 219
 7.6 “Speed of convergence to equilibrium and to normality
 for diffusions with multiple periodic scales” 230

Part III Large Time Asymptotics for Markov
Processes II: Dynamical Systems and Iterated Maps

8 Dynamical Systems, IID Random Iterations, and Markov Chains 265
 Krishna B. Athreya
 8.1 Dynamical Systems .. 265
 8.2 IID Random Iterations 267
 8.2.1 Examples ... 267
 8.2.2 A Basic Convergence Theorem 269
8.3 Markov Chains

References 274

9 Random Dynamical Systems and Selected Works of Rabi Bhattacharya

Edward C. Waymire

9.1 Introduction and Preliminaries 277
9.2 A Splitting Theorem 280
9.3 Related Results and Applications 281
9.4 Fluctuation Laws and Limit Theorems 283
9.5 Other Approaches, Problems, and Directions 284
9.6 Concluding Remarks 286

References 286

10 Reprints: Part III

R.N. Bhattacharya and Coauthors

10.1 “Asymptotics of a class of Markov processes which are not in general irreducible”.............. 290
10.2 “Random iterations of two quadratic maps” 306
10.3 “On a theorem of Dubins and Freedman” 317
10.4 “An approach to the existence of unique invariant probabilities for Markov processes” 339

Part IV Stochastic Foundations in Applied Sciences I: Economics

11 Stability Analysis for Random Dynamical Systems in Economics 363

Takashi Kamihigashi and John Stachurski

11.1 Introduction 363
11.2 Basic Economic Models 365
11.2.1 Optimal Growth 366
11.2.2 Stability Arguments 366
11.2.3 Overlapping Generations 367
11.2.4 Other Applications 368
11.3 Stability Conditions 368
11.3.1 Splitting ... 368
11.3.2 Monotone Mixing 369
11.3.3 Order Mixing 370
11.3.4 Order Reversing 371
11.4 Conclusion .. 372

References 372

12 Some Economic Applications of Recent Advances in Random Dynamical Systems 375

Santanu Roy

12.1 Introduction 375
12.2 A Simple Economic Model of Capital Accumulation under Uncertainty 376
12.3 Long Run Behavior of the Economic System 379

References 382
Contents

13 Reprints: Part IV ... 385
 R.N. Bhattacharya and Coauthors
 13.1 “Dynamical systems subject to random shocks: an introduction” . . 386
 13.2 “Random iterates of monotone maps” 399

Part V Stochastic Foundations in Applied Sciences II: Geophysics

14 Advection-Dispersion in Fluid Media and Selected Works of Rabi
 Bhattacharya ... 411
 Enrique A. Thomann and Edward C. Waymire
 14.1 Introduction .. 411
 14.2 Brownian Motion in Porous Media and Taylor-Aris Dispersion . . 415
 14.3 Multiscale Dispersion ... 417
 14.4 Discontinuous Coefficients and Skew Dispersion 419
 14.5 Concluding Remarks ... 420
 References ... 421

15 Cascade Representations for the Navier–Stokes Equations 425
 Franco Flandoli and Marco Romito
 15.1 Introduction .. 425
 15.2 Fourier Formulation of the Navier–Stokes Equations 426
 15.3 Picard Iteration and Deterministic Cascade Representation 428
 15.4 Stochastic Cascade and Majorizing Kernels 429
 15.4.1 The Stochastic Cascade of Le Jan and Sznitman ... 429
 15.4.2 Majorizing Kernels .. 431
 15.5 Pruning the Trees ... 432
 15.5.1 The Comparison Equation 432
 15.5.2 Pruning the Tree 433
 References ... 434

16 Reprints: Part V .. 437
 R.N. Bhattacharya and Coauthors
 16.1 “On a statistical theory of solute transport in porous media” . . 438
 16.2 “On the Taylor-Aris theory of solute transport in a capillary” . . 453
 16.3 “Asymptotics of solute dispersion in periodic porous media” . . 461
 16.4 “Multiscale diffusion processes with periodic coefficients and an
 application to solute transport in porous media” 475
 16.5 “Majorizing kernel and stochastic cascades with application
 to incompressible Navier Stokes equations” 546

Part VI Stochastic Foundations in Applied Sciences III: Statistics

17 Nonparametric Statistical Methods on Manifolds 587
 Ian L. Dryden, Huiiling Le, Simon P. Preston,
 and Andrew T.A. Wood
 17.1 Bootstrap Methods ... 587
 17.2 Curve Fitting ... 591
 References ... 596
18 Nonparametric Statistics on Manifolds and Beyond
Stephan Huckemann and Thomas Hotz

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>Before “Large Sample Theory of Intrinsic and Extrinsic SampleMeans on Manifolds”</td>
<td>599</td>
</tr>
<tr>
<td>18.2</td>
<td>“Large Sample Theory of Intrinsic and Extrinsic SampleMeans on Manifolds”</td>
<td>601</td>
</tr>
<tr>
<td>18.3</td>
<td>Beyond “Large Sample Theory of Intrinsic and Extrinsic SampleMeans on Manifolds”</td>
<td>603</td>
</tr>
<tr>
<td>18.4</td>
<td>Conclusion</td>
<td>605</td>
</tr>
</tbody>
</table>

19 Reprints: Part VI
R.R. Bhattacharya and Coauthors

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>“Large sample theory of intrinsic and extrinsic samplemeans on manifolds, I”</td>
<td>612</td>
</tr>
<tr>
<td>19.2</td>
<td>“Large sample theory of intrinsic and extrinsic samplemeans on manifolds, II”</td>
<td>642</td>
</tr>
<tr>
<td>19.3</td>
<td>“Statistics on Riemannian manifolds: asymptotic distributionand curvature”</td>
<td>679</td>
</tr>
<tr>
<td>19.4</td>
<td>“Statistics on manifolds with applications to shape spaces”</td>
<td>689</td>
</tr>
</tbody>
</table>
Rabi N. Bhattacharya
Selected Papers
Denker, M.; Waymire, E.C. (Eds.)
2016, XXI, 711 p. 1 illus., Hardcover
ISBN: 978-3-319-30188-4
A product of Birkhäuser Basel