Contents

1 Investment in Generation and Transmission Facilities 1
 1.1 Long-Term Decision Making Under Uncertainty 1
 1.2 Electricity Markets ... 4
 1.3 Transmission Expansion Planning 7
 1.4 Generation Investment ... 9
 1.5 Generation and Transmission Expansion Planning 12
 1.6 Investment Valuation and Timing 14
 1.7 What We Do and What We Do Not Do 15
 1.8 End-of-Chapter Exercises 16
References .. 17

2 Transmission Expansion Planning 21
 2.1 Introduction .. 21
 2.2 Deterministic Approach .. 24
 2.2.1 Notation .. 25
 2.2.2 MINLP Model Formulation 26
 2.2.3 Linearization of Products of Binary
 and Continuous Variables 32
 2.2.4 MILP Model Formulation 32
 2.3 Robust Approach ... 38
 2.3.1 Adaptive Robust Optimization Formulation 39
 2.3.2 Definition of Uncertainty Sets 40
 2.3.3 Feasibility of Operating Decision Variables 41
 2.3.4 Detailed Formulation 41
 2.3.5 Solution Procedure 43
 2.4 Summary ... 53
 2.5 End-of-Chapter Exercises 53
 2.6 GAMS Code ... 56
References .. 58
3 Generation Expansion Planning

3.1 Introduction

3.2 Problem Description
- 3.2.1 Notation
- 3.2.2 Aim and Assumptions
- 3.2.3 Time Framework
- 3.2.4 Operating Conditions
- 3.2.5 Uncertainty Characterization
- 3.2.6 Modeling of the Transmission Network
- 3.2.7 Complementarity Model

3.3 Deterministic Single-Node Static GEP
- 3.3.1 Complementarity Model
- 3.3.2 Equivalent NLP Formulation
- 3.3.3 Equivalent MILP Formulation
- 3.3.4 Meaning of Dual Variables λ_o

3.4 Deterministic Single-Node Dynamic GEP

3.5 Deterministic Network-Constrained Static GEP
- 3.5.1 Complementarity Model
- 3.5.2 Equivalent MILP Formulation
- 3.5.3 Meaning of Dual Variables λ_{no}

3.6 Stochastic Single-Node GEP
- 3.6.1 Static Model Formulation
- 3.6.2 Dynamic Model Formulation

3.7 Summary and Conclusions

3.8 End-of-Chapter Exercises

3.9 GAMS Codes

References

4 Generation and Transmission Expansion Planning

4.1 Introduction

4.2 Problem Description
- 4.2.1 Notation
- 4.2.2 Approach
- 4.2.3 Risk Management

4.3 Deterministic Static G&TEP
- 4.3.1 MINLP Formulation
- 4.3.2 MILP Formulation

4.4 Deterministic Dynamic G&TEP

4.5 Stochastic G&TEP
- 4.5.1 Static Approach
- 4.5.2 Dynamic Approach

4.6 Stochastic Dynamic Risk-Constrained G&TEP
- 4.6.1 Formulation

4.7 Summary and Conclusions
5 Investment in Production Capacity

5.1 Introduction

5.1.1 Electricity Pool

5.1.2 Network Representation

5.1.3 Static and Dynamic Investment Models

5.1.4 Operating Conditions: Demand Level and Stochastic Production

5.1.5 Uncertainty

5.1.6 Bilevel Model

5.1.7 Alternative Solution Approaches

5.2 Static Production Capacity Investment Model

5.3 Dynamic Production Capacity Investment Model

5.4 Direct Solution Approach

5.4.1 MPEC

5.4.2 MPEC Linearization

5.4.3 Numerical Results

5.5 Benders Solution Approach

5.5.1 Complicating Variables

5.5.2 Convexity Analysis

5.5.3 Functioning of Benders Decomposition

5.5.4 The Benders Algorithm

5.6 Summary

5.7 End-of-Chapter Exercises

5.8 GAMS Code

References

6 Investment Equilibria

6.1 Introduction

6.2 Solution Approach

6.3 Modeling Features and Assumptions

6.4 Single-Producer Problem

6.4.1 MPEC

6.5 Multiple-Producer Problem: EPEC

6.5.1 EPEC Solution

6.5.2 Searching for Multiple Solutions

6.5.3 Ex-Post Algorithm for Detecting Nash Equilibria

6.5.4 Numerical Results

6.6 Summary

6.7 End-of-Chapter Exercises

6.8 GAMS Code

References
Appendix A: Engineering Economics ... 327
Appendix B: Optimization Under Uncertainty 337
Appendix C: Complementarity ... 347
Appendix D: Risk Management ... 361
Appendix E: Dynamic Programming ... 371
Index .. 381
Investment in Electricity Generation and Transmission
Decision Making under Uncertainty
Conejo, A.J.; Baringo Morales, L.; Kazempour, S.J.; Siddiqui, A.S.
2016, XIV, 384 p. 89 illus., 10 illus. in color., Hardcover
ISBN: 978-3-319-29499-5