2.1 Introduction

Rechargeable lithium-ion battery technology dominates the portable electronics market following the rapid growth in demand since the introduction of the first, commercial lithium-ion battery by Sony in 1990 [1]. Motivated by concerns for global warming and environmental degradation, researchers have focused on extending the use of rechargeable lithium-ion batteries to large-scale applications. Lithium-ion batteries are attractive candidates for these applications due to their high energy density, high efficiency, and long cycle life. These applications include use as power supplies for low emission hybrid and plug-in electric vehicles and as standby storage to mitigate the unavoidable intermittency of renewable energy technologies like solar and wind power [2, 3]. These extended, large-scale applications place increasingly stringent demands on battery performance and demand the development and optimization of new battery chemistries to meet the challenges for commercial acceptance [3, 4]. In large-scale applications, factors such as safety, toxicity, cost, and abundance of raw materials become highly significant. In addition, high charge and discharge rate requirements mean that nanostructured materials are essential to meet performance targets.

The original, commercial secondary lithium-ion batteries were based on a lithium transition metal oxide cathode (e.g., LiCoO₂) and a carbon anode [1]. These two electrodes are insertion materials capable of accommodating lithium ions within their lattice, with very little change to the overall structure. During the charge cycle, lithium ions are extracted from the cathode and at the same time the...
transition metal is oxidized. The lithium ions are transported by the electrolyte to the anode where they combine with electrons from the external circuit to form lithium atoms within the carbon matrix. During discharge this process is reversed; lithium atoms at the anode are ionized and lithium ions move through the electrolyte to the anode while electrons move through the external circuit. At the cathode, the lithium ions move into the crystal lattice and the transition metal cations are simultaneously reduced by electrons from the external circuit to maintain charge neutrality. The movement of the lithium ions from anode to cathode and back is the basis of operation of the cells and the origin of the term lithium-ion battery. A schematic diagram of a lithium-ion cell is shown in Fig. 2.1.

Over the years, modifications to the cell chemistry have included changes to the anode, cathode, and electrolyte compositions. The driving force for these innovations has been to increase the electrochemical cell capacity, improve safety and reliability, reduce cost, and increase the reversibility of lithium-ion insertion and extraction with repeated cycling. The performance of electrochemical cells is determined by the crystallographic structure, chemical composition, morphology, and microstructure of electrode materials. In addition, for high rate applications, the optimal nanostructure and architecture of electrodes are essential to provide rapid charge transfer across the electrode/electrolyte interface and fast transfer of lithium ions and electrons within the active material [5]. Significant advances have been made in improving the capacity of anode materials for lithium-ion batteries [6, 7], but finding suitable high-capacity cathode materials to match the anode performance remains a challenge.
Initially, the selection of suitable cathodes was confined to those materials that had a high intrinsic electronic conductivity, for example, the lithium transition metal oxides. Safety concerns and the desire to move away from relatively scarce, toxic, and expensive transition metals, like cobalt, prompted a broadening of the search to include polyanionic compounds like the lithium transition metal phosphates and silicates [8]. The phosphates and silicates were attractive as the strong covalent bonds in the polyanionic units reduce the likelihood of oxygen evolution in the charged state, compared to the oxides [9]. Oxygen evolution poses a hazard when cells are overcharged resulting in undesirable thermal runaway. Polyanionic compounds also offered the possibility of using nontoxic, abundant metals like Fe and Mn to replace the Co and Ni commonly used in lithium transition metal oxide cathodes. Along with their promise of improved safety, however, comes the disadvantage of their low intrinsic electronic conductivity. These cathode materials, when produced as micron-sized particles, show high polarization when charged at high current rates, resulting in very low capacities. It is believed that this polarization is due to both the poor electronic conductivity of the materials resulting in poor charge transfer and the low lithium-ion diffusion rates within the materials. These limitations have driven researchers to explore nanostructuring cathode materials both to increase the surface area to maximize charge transfer and to reduce the diffusion length to minimize the effect of the low lithium diffusion rates [10].

Lithium iron phosphate (LiFePO4), first proposed by Padhi and Goodenough [9] in the 1990s, is the most commercially successful polyanionic cathode to date. LiFePO4 has excellent rechargeability and consists of abundant, nontoxic materials and has proved very attractive for a range of commercial applications. LiFePO4 discharges at ~3.4 V vs. a Li/Li+ anode with a capacity of 170 mAhg−1 (95 % of theoretical capacity). Nanoparticles of LiFePO4 coated with a layer of conductive carbon perform well even at high current rates [11, 12].

The success of LiFePO4 prompted renewed interest in other polyanionic compounds as lithium-ion battery cathodes [13]. In particular, the lithium transition metal orthosilicates Li2MSiO4, where M = Mn, Fe, or Ni have attracted the attention of lithium ion battery researchers [14]. In this chapter the potential of Li2MnSiO4 as a secondary lithium-ion battery cathode is explored with particular emphasis on the effect of nanostructuring on electrochemical performance. In this chapter, we will first discuss the challenges associated with the use of Li2MnSiO4 cathodes, secondly we will consider the advantages of nanostructuring, and thirdly we will review the published data on nanostructured Li2MnSiO4 cathodes.

### 2.2 The Attraction of Li2MnSiO4 as a Lithium-Ion Battery Cathode

Among the lithium transition metal orthosilicates Li2MSiO4 (where M = Mn, Co, or Ni), Li2MnSiO4 offers the greatest potential as a high-voltage, high-energy-density cathode material. Firstly, it is composed of safe, nontoxic, and abundant
elements, offering the possibility for the formation of low-cost cathodes. Secondly, if both lithium ions could be extracted reversibly from Li$_2$MnSiO$_4$, the theoretical capacity would be a very attractive 330 mAh g$^{-1}$ (roughly double the capacity of LiFePO$_4$ electrodes), with the cathode operating with both the Mn$^{2+/3+}$ and Mn$^{3+/4+}$ electrochemical couples [15, 16]. Of the three Li$_2$MSiO$_4$ cathodes, Li$_2$FeSiO$_4$ shows the most stable capacity with cycling but at a relatively low average voltage of ~2.5 V which lowers the energy density of the cathode. Recent studies have indicated that more than one Li ion can be reversibly extracted from Li$_2$FeSiO$_4$ although this remains controversial and further studies are needed to confirm this conclusively [13, 17, 18]. Systematic studies of Li$_2$CoSiO$_4$ by Bruce et al. [19] showed low capacities and poor reversibility with cycling, and this has been confirmed by other investigators [20]. Li$_2$MnSiO$_4$ is the most likely of the three compounds to exhibit reversible extraction of more than one lithium ion per formula unit as the Mn$^{4+}$ state is more stable than Fe$^{4+}$ or Co$^{4+}$ and is predicted to be accessible within the voltage stability range of common electrolytes [14].

2.3 Challenges of Lithium Manganese Orthosilicate (Li$_2$MnSiO$_4$) Cathodes

2.3.1 Multiple Structural Forms

All the lithium transition metal silicates, including Li$_2$MnSiO$_4$, can exist in a wide variety of structural forms. There are at least four known forms of Li$_2$MnSiO$_4$ at ambient pressure [15, 21–23]. In all cases the Li, Mn, and Si cations are in tetrahedral coordination in a distorted hexagonally close-packed oxygen array, but the arrangement of the tetrahedra differs in each case (Fig. 2.2) [24].

In practice, the multitude of structural forms makes the synthesis of well-defined, single-phase products challenging. The most widely studied forms are the orthorhombic polymorphs ($Pmn_2_1$ and $Pmn_2$) which differ only slightly in thermodynamic stability [25]. The monoclinic $P2_1/n$ polymorph is a high temperature form typically prepared at 900 °C, although it can be synthesized at lower temperatures with the partial substitution of Mn with Mg [22, 26]. The $Pn$ polymorph has only been prepared by ion exchange from the sodium analogue [23]. The analysis of the cathodes is complicated by the fact that the materials frequently contain multiple phases of Li$_2$MnSiO$_4$ as well as secondary impurity phases like MnO and Li$_2$SiO$_3$. This complexity makes the production of well-defined and reproducible samples difficult, and small changes in the synthesis conditions can result in very different phase compositions with resulting differences in electrochemical performance.
2.3.2 Low Lithium-Ion Diffusion Rates

The lithium-ion diffusion pathways in the different structural forms of Li$_2$MnSiO$_4$ are distinctly different. The orthorhombic forms $Pmn2_1$ and $Pmnb$ (Fig. 2.2a and b) have two-dimensional pathways for lithium-ion diffusion, while the monoclinic forms ($P2_1/n$ and $Pn$) have lithium positions connected in three dimensions (Fig. 2.2c and d). Calculations have shown that the lithium-ion diffusion pathways in these materials are curved and anisotropic and that all are poor conductors of lithium ions [27, 28]. This finding suggests that lithium diffusion in Li$_2$MnSiO$_4$ electrodes may be limiting in high rate applications.

2.3.3 Low Electronic Conductivity

In Li$_2$MnSiO$_4$, MnO$_4$ tetrahedra are surrounded by insulating SiO$_4$ tetrahedra resulting in very low intrinsic conductivity. The conductivity of Li$_2$MnSiO$_4$ at room temperature is of the order of $10^{-16}$ S cm$^{-1}$ but increases a 100-fold at 60 °C [29, 30]. Unfortunately, this is the case for all structural forms of Li$_2$MnSiO$_4$, and this is confirmed by calculations of the band gap for different structural forms [28]. This low conductivity means that the material is effectively electrochemically inactive when particles are micron sized. Without nanostructuring, Li$_2$MnSiO$_4$ is completely ineffective as a cathode material but nanostructuring and carbon coating dramatically increase the electrochemical performance and offer hope that the
potential of this material may be realized in practice. For \( \text{Li}_2\text{MnSiO}_4 \), as with other polyanionic materials with low intrinsic electronic and ionic conductivity, nanostructuring is essential to achieve reasonable electrochemical performance.

### 2.3.4 Volumetric Changes and Amorphization

Density functional theory calculations indicated that the extraction of both lithium ions from \( \text{Li}_2\text{MnSiO}_4 \) should be feasible within the electrolyte stability window of common electrolytes [25]. However, density functional theory simulations by Kokalj et al. [30] also indicated that there is a dramatic volume change associated with extraction of more than 1 Li per formula unit in \( \text{Li}_2\text{MnSiO}_4 \) (−17% for \( \text{Li}_{0.5}\text{MnSiO}_4 \) and −27% for \( \text{MnSiO}_4 \)). It appears that such large volumetric changes cannot be accommodated within the crystallographic structure and lead to structural collapse and amorphization when lithium is extracted [29, 31].

### 2.4 Advantages of Nanostructuring \( \text{Li}_2\text{MnSiO}_4 \) Cathodes

#### 2.4.1 Carbon Coating

Carbon is an excellent electronic conductor. When nanoparticles of a poorly conducting electrode material are coated with a layer of carbon, this increases the conductivity of the composite electrode. The carbon coating acts as a distributed current collector and provides a continuous pathway for rapid electronic conduction throughout the nanostructured electrode. In this way, the contact resistance between adjacent particles is dramatically reduced [32]. Thin carbon coatings are also generally permeable to Li ions and therefore do not inhibit the diffusion of lithium into the active material. Reduction of the internal resistance of the composite cathode results in a reduction in polarization at high current densities and therefore in increased high-rate capacities. Excess carbon in composite electrodes decreases the overall energy density of the electrode, and therefore the amount of carbon should be kept to a minimum.

#### 2.4.2 Maximizing the Surface Area

In nanosize particles the surface-to-volume ratio is maximized. This implies that there is a greater area for interaction between the electrolyte and the electrode particles. This results in reduced polarization and greater utilization of the electrode material. However, the increased surface area for interaction can potentially result
in problems with nanostructured cathode materials if they are unstable in contact with the electrolyte, leading to increased degradation of the electrode surface. In this case, carbon coating has the advantage of reducing the interaction between the active material and the electrolyte and effectively stabilizing the interface.

### 2.4.3 Reducing the Lithium-Ion Diffusion Length

Due to the low lithium-ion diffusion rate in Li$_2$MnSiO$_4$ discussed in Sect. 3.2, nanostructuring is important to reduce the lithium-ion diffusion length, i.e., the length that Li ions need to diffuse from the surface of the individual particles into the bulk. This becomes increasingly critical at high current rates. Nanostructuring reduces polarization at high current rates and enables higher capacities to be obtained from cathodes before the voltage cutoff is reached.

### 2.5 Synthesis and Electrochemistry of Nanostructured Li$_2$MnSiO$_4$

#### 2.5.1 Pechini Sol–Gel Synthesis

From the outset, it was recognized that minimizing particle size and incorporating a carbon coating were critical to achieving optimized electrochemical performance in Li$_2$MnSiO$_4$ cathodes. Pechini sol–gel synthesis was adopted by Dominko [15] and co-workers in their pioneering work to prepare 70 nm particles of the $Pmn$$_2_1$ form. In their initial report, although there were islands of carbon between particles, there was no discrete carbon coating. The results of electrochemical tests were disappointing, yielding reversible capacities corresponding to only 0.6 Li ions on the first discharge cycle followed by a rapid capacity fade on subsequent cycles [15] (Fig. 2.3a). Refinements to the synthesis technique in later studies reduced the particle size to 20–50 nm (Fig. 2.3b and c), with a uniform distribution of ~5 wt% of carbon, but this failed to improve the room temperature electrochemical cycling performance compared to the earlier studies [16]. Electrochemical cycling experiments at 60 °C showed a plateau near 4 V corresponding to the extraction of 1.5 Li ions but this capacity was not recovered on discharge. It was not clear if this observed charge capacity corresponded to Li extraction or to irreversible side reactions with the electrolyte at high voltage. Even after ball milling to reduce the particle size and improve the distribution of carbon, there was only a slight reduction in polarization. All samples consistently showed a rapid loss of electrochemical capacity with repeated charge–discharge cycling. Even after adopting the same nanostructuring tactics that had proved so successful with LiFePO$_4$, the
authors failed to achieve a dramatic improvement in the performance of Li$_2$MnSiO$_4$ electrodes.

To understand the persistent loss of capacity with cycling, ex situ x-ray diffraction studies of partially charged cathodes were conducted. The results revealed a gradual loss of x-ray peak intensity with lithium extraction on charge and no recovery of the peaks when the cell was subsequently discharged (Fig. 2.4). This indicated that the Li$_2$MnSiO$_4$ structure underwent irreversible change when lithium was extracted, and these results were confirmed by Li et al. [31] and by further in situ studies by Dominko et al. [29]. The experimentally observed structural collapse (Fig. 2.4) was attributed to the fact that the crystal lattice was unable to accommodate the large volume changes associated with the extraction of more than one lithium ion per formula unit [30].

### 2.5.2 Alternative Sol–Gel Routes

Refinements to the sol–gel synthesis route were attempted. Deng et al. [33] used a modified citric acid-assisted route with tetraethyl orthosilicate (TEOS) as the silicon source but, although 10.5 wt% carbon was successfully incorporated in the product, the primary particle size was ~200 nm. The electrochemical cycling results for this product were similar to those found in earlier studies. Belharouak et al. [34] also used a modified sol–gel route with Si(CH$_3$COO)$_4$ as the silicon source but as-prepared samples had primary particles in the 200–300 nm range. As-prepared samples were effectively electrochemically inactive (Fig. 2.5a).
Fig. 2.4 X-ray diffraction patterns of compositions obtained with electrochemical oxidation of Li$_2$MnSiO$_4$-based composites. The value of $x$ corresponds to the expected chemical composition of the electrode that is based on the amount of charge passed through the cell. The remaining diffraction peak marked with asterisk denotes MnO impurity (Reprinted from Dominko [29], copyright (2007), with permission from Elsevier)

Fig. 2.5 Voltage profiles of (a) as-prepared Li$_2$MnSiO$_4$, (b) carbon-coated Li$_2$MnSiO$_4$, and (c) high-energy ball-milled Li$_2$MnSiO$_4$ (Reprinted with permission from Belharouak et al. [34], copyright (2009) American Chemical Society)
However, dramatic improvement in electrochemical capacity was demonstrated after ball milling to reduce the particle size and coating the particles with a conductive layer of carbon to reduce the charge-transfer resistance and the inter-particle contact resistance (Fig. 2.5b and c). However, even after milling, the particles were agglomerated and the electrochemical capacity remained limited to approximately that equivalent to the reversible extraction, and insertion of one Li ion per formula unit and the capacity retention with cycling was poor.

### 2.5.3 Solution Synthesis

Li et al. [31] adopted a solution synthesis route using Li and Mn acetates with TEOS in a water–ethanol solution refluxed at 80 °C for 24 h. Sucrose was added as a carbon source and the product was calcined at 600 °C in flowing N₂. The final particle size of 20–30 nm was again comparable to that obtained with Pechini synthesis and the structural form of the product was the $Pmn2_1$ polymorph (Fig. 2.6d). The initial discharge capacity obtained with this material in electrochemical cycling tests was 210 mAh g⁻¹ at a current rate of 5 mA g⁻¹. This was the first report of a discharge capacity corresponding to insertion of more than 1 Li ion per formula unit (Fig. 2.6c) possibly due to the well-defined carbon coating on the surface of the primary particles shown in the TEM image in Fig. 2.6e. Once again the loss of capacity with repeated cycling was confirmed to be due to a loss of crystallinity with lithium extraction (Fig. 2.6b).

![Fig. 2.6](image-url)  
**Fig. 2.6** Electrochemical performances of the material: (a) voltage vs. composition curves at 5 mA g⁻¹; (b) cycling performance between 1.5 and 4.8 V at 5 mA g⁻¹; (c) first discharge curves at different current densities: (h) 5 mA g⁻¹; (k) 30 mA g⁻¹; (l) 150 mA g⁻¹; HRTEM images of Li₂MnSiO₄/C nanocomposite material with different magnifications (d and e) (Reprinted from Li et al. [31], copyright (2007) with permission from Elsevier)
2.5.4 Polyol Synthesis

Liu et al. [35] adopted a polyol synthesis route for the production of Li$_2$MnSiO$_4$. Lithium and manganese acetates and tetraethyl silicate were refluxed in ethylene glycol at 196 °C for 16 h. The product was dried at 150 °C and milled with sucrose to provide a carbon source. After calcination at 600 °C in an inert atmosphere, 30 nm particles of the $Pmnn2_1$ polymorph of Li$_2$MnSiO$_4$ were formed. The electrochemical cycling performance of this material was comparable to that reported in earlier studies, and the rapid drop in capacity with cycling was again confirmed to be due to a loss of crystallinity when lithium was extracted.

2.5.5 Hydrothermal Synthesis

Sol–gel synthesis techniques and variations thereof failed to result in any dramatic breakthroughs in the performance of Li$_2$MnSiO$_4$. Hydrothermal synthesis, in which the precursors are reacted in a sealed autoclave at moderate temperatures but elevated pressures, was introduced as an alternative. This method was initially utilized very successfully to synthesize individual polymorphs of Li$_2$MnSiO$_4$ for crystallographic structural investigations [36]. However, no electrochemical evaluation of these materials was performed.

Manthiram et al. [37] used microwave-assisted hydrothermal synthesis to prepare Li$_2$MnSiO$_4$ at 30 b and 300 °C. The most significant advantage of this technique is that the synthesis time was reduced to only 25 min resulting in energy saving. After calcination at 650 °C in Ar, the sample consisted of agglomerated 20 nm primary particles with a well-defined layer of carbon on the surface of the particles (Fig. 2.7a and b). Despite high discharge capacities of over 200 mAhg$^{-1}$ on the first two discharge cycles at room temperature (Fig. 2.7c), these materials rapidly lost capacity with repeated charge–discharge cycling. The Jahn–Teller distortion of the manganese cations and dissolution of manganese in the electrolyte

![Image](image.png)

**Fig. 2.7** (a) TEM and (b) HRTEM images of the Li$_2$MnSiO$_4$/C nanocomposite. (c) Charge–discharge profiles recorded at C/20 rate and room temperature of Li$_2$MnSiO$_4$/C (Reprinted with permission Manthiram [37]. Copyright (2010) American Chemical Society)
was given as an explanation for the capacity decline with cycling. The initial discharge capacity at elevated temperature (55 °C) was 250 mAhg\(^{-1}\) but the capacity decreased even more rapidly with cycling at this temperature probably due to increased interaction with the electrolyte at the elevated temperature.

### 2.5.6 Molten Carbonate Flux Synthesis

Kojima et al. [38] used a (Li\(_{0.435}Na_{0.315}K_{0.25}\))\(_2\)CO\(_3\) flux with Li\(_2\)SiO\(_3\) and either MnC\(_2\)O\(_4\).2H\(_2\)O or Mn(OH)\(_2\) precursors. Reactions were carried out in an atmosphere of CO\(_2\)/H\(_2\) 100:3 v/v. This method enabled the production of single-phase products of the \(Pmn2_1\) form at 500–650 °C, significantly reducing the synthesis temperature compared to conventional sol–gel routes. A key finding was that the choice of manganese precursor dramatically affected the morphology of the final Li\(_2\)MnSiO\(_4\) product and this, in turn, resulted in widely different electrochemical performances. The samples with flake-like morphology prepared with Mn(OH)\(_2\) precursors (Fig. 2.8b and d) gave higher initial capacities and better capacity retention compared to the more spherical particles prepared with oxalates (Fig. 2.8a and c). However, in both cases, capacity loss with cycling was significant with only 55 % capacity retention after 20 cycles for the better performing samples prepared from Mn(OH)\(_2\).

Fig. 2.8 SEM images and charge–discharge curves of the Li\(_2\)MnSiO\(_4\) synthesized from MnC\(_2\)O\(_4\).2H\(_2\)O (LMS-MCO) (a and c) and manganese hydroxide (LMS-MOH) (b and d) at 30 °C with a current density of 10 mAg\(^{-1}\) in the voltage range of 1.5–4.5 V (Reproduced from Kojima et al. [38], by permission of The Electrochemical Society)
2.5.7 Supercritical Solvothermal Synthesis

2.5.7.1 Monodisperse Li$_2$MnSiO$_4$ Particles

Supercritical solvothermal synthesis utilizes very high-pressure, moderate temperatures and has the advantage that synthesis times can be reduced to the order of minutes. The requirement of specialized equipment for this type of synthesis would, however, make it expensive and difficult to apply for large-scale manufacture despite the reduced reaction times. This technique was used by Kempaiah et al. [39] to synthesize monodisperse 5–20 nm particles of Li$_2$MnSiO$_4$ (Fig. 2.9a–d). The material was found by x-ray diffraction to be a well-defined Pmn$_2_1$ polymorph with no obvious impurities. The heat-treated, conductive polymer PEDOT was used for the first time to form a conductive coating on the surface of the particles (Fig. 2.9d). Although excellent capacities were reported for the initial discharge cycle, approaching 300 mAh$^{-1}$, there was a rapid drop in discharge capacity after the first cycle at room temperature, followed by a gradual decline in subsequent cycles (Fig. 2.10a and c). The capacities reported for cycling at 40 °C were above 250 mAh$^{-1}$ for the first 20 cycles (Fig. 2.10b and d). It should

Fig 2.9 (a) and (b) TEM and HRTEM images of as-synthesized Li$_2$MnSiO$_4$ and PEDOT/Li$_2$MnSiO$_4$ nanoparticles, (c) particle size distribution and (d) HRTEM image showing PEDOT-coated Li$_2$MnSiO$_4$ nanoparticles (Reproduced from Kempaiah et al. [39] with permission of The Royal Society of Chemistry)
be noted that, although the capacities were high, much of the discharge capacity was recorded at low voltages (below 2.5 V) with only 180 mAhg\(^{-1}\) above 2.5 V for the first discharge cycle at 40 \(\text{C/14 C}\) (Fig. 2.10b); this would reduce the overall energy density of the cathode.

2.5.7.2 Nanosheet Morphology

The success and wide-ranging applications for graphene have prompted great interest in nanosheet morphology [40] The formation of nanosheets only a few nanometers in thickness and with lateral dimensions in the micron range has led to the emergence of a new class of materials with novel properties and a very high specific surface area. Nanosheets of a wide range of materials have been synthesized including polyanionic cathodes like LiFePO\(_4\), LiMnPO\(_4\), and LiCoPO\(_4\) which show improved high rate performance and cycle stability compared to bulk materials [41]. Rangappa et al. [42] applied the supercritical fluid technique to form
nanosheets of Li$_2$MnSiO$_4$ with a thickness of only several atoms and lateral dimensions of 100–300 nm (Fig. 2.11a–c). Nanosheet morphology has the advantage of dramatically reducing the lithium ion diffusion length in the material and also potentially accommodating the volumetric changes associated with lithium extraction and insertion. However, the complex synthetic pathway made it difficult to control the phase purity of the product, and x-ray analysis results revealed the presence of peaks of unidentified impurities. The electrochemical results showed high discharge capacities above 300 mAhg$^{-1}$ for the first 20 cycles at 45 °C and a current rate of 0.02 C, followed by a reported dramatic loss of capacity (Fig. 2.12). This loss of capacity was probably due to structural collapse of the Li$_2$MnSiO$_4$ as x-ray diffraction of cathodes after cycling showed no remaining peaks of the initial Li$_2$MnSiO$_4$ phase. This indicates that the nanosheet morphology was not successful in overcoming the structural instability associated with lithium insertion and extraction in Li$_2$MnSiO$_4$. However, the nanosheet morphology was successful in reducing the polarization of the cathodes resulting in a gently sloping discharge curve and high capacities. Unfortunately no cycling data was given for higher current rates as it is in this regime that the benefits of this morphology are likely to be most significant.

2.5.7.3 The Use of Surfactants to Create Complex Nanostructures

Deveraju et al. [43] performed synthesis reactions using the supercritical fluid technique and incorporating surfactants in the synthesis. By varying the amount and nature of the surfactant, the reaction time, and temperature, they formed samples with a wide range of particle sizes and morphologies, including monodisperse nanoparticles and complex, hierarchical structures (Fig. 2.13). Carbon coating was achieved by wet milling with PEDOT and carbon black followed by heat treatment at 450 °C in a reducing atmosphere. The complex synthesis resulted in somewhat impure products in which it was difficult to control the phase content. No detailed structural analysis was performed on the products. The electrochemical
Fig. 2.12 Charge and discharge profile of first and second cycles. (a) Li$_2$MnSiO$_4$ samples measured at 45 °C temperatures at 0.02 C rates. (b) The cyclic performance of Li$_2$MnSiO$_4$ samples (Reprinted with permission from Rangappa et al. [42]. Copyright (2012) American Chemical Society)

Fig. 2.13 Schematic of nanocrystalline Li$_2$MnSiO$_4$ positive electrode materials obtained via a supercritical fluid process and rapid reaction times (4–30 min). The process enables the synthesis of particles with a diameter of between 4 and 100 nm (Reprinted from Devaraju et al. [43] with permission of the Royal Society of Chemistry)
performance of several of these materials is shown in Fig. 2.14. The highest capacities were reported for the complex hierarchical structures (Fig. 2.14b) although the average voltage was lower than that of the nanoparticle electrodes due to the absence of the voltage plateau region (Fig. 2.14a). Excellent capacity retention with cycling was observed but it should be noted that the composite cathodes contained about 40 w% carbon. This high carbon content would reduce the energy density of the cathodes. Good cycling stability with high carbon loading was earlier reported by Aravindan et al. [44].
2.5.8 Using Carbon Supports

2.5.8.1 Reduced Graphene Oxide Networks

Reduced graphene oxide (RGO) has recently attracted interest as a cathode material for lithium-ion batteries, and it has been demonstrated that Faradaic reactions occur between lithium and functional groups on the graphene oxide surface [45]. Zhao et al. [46] reported the use of carbon coating and a reduced graphene oxide network to support homogenously distributed nanoparticles of Li₂MnSiO₄ (Fig. 2.15). The x-ray diffraction data indicate the presence of the \(Pmn_{21}\) polymorph of Li₂MnSiO₄ with a minor MnO impurity. The electrochemical capacity at low current rates (0.05 C) was reported to be 290 mAhg\(^{-1}\), and, even at the 1C rate, the material delivered a capacity of 170 mAhg\(^{-1}\) after 700 cycles based on the mass of the Li₂MnSiO₄ (Fig. 2.16a and b). The total carbon content in the composite was calculated to be 26% after synthesis, and a further 20% of Ketjenblack was added to form the cathodes for electrochemical testing. At least some of the

Fig. 2.15 Schematic synthesis of the RGO@Li₂MnSiO₄@C composite (Reprinted from Zhao et al. [46] with permission of the Royal Society of Chemistry)
The observed capacity is likely due to the electrochemical activity of the RGO network itself, which is not taken into consideration in the capacity calculations [45]. The composite cathode had increased conductivity due to the presence of the conductive RGO, and the authors claimed that the RGO network and carbon coating prevented Mn dissolution into the electrolyte resulting in a stable electrochemical performance over 700 cycles in contrast to the findings of Rangappa et al. [42] who reported a dramatic capacity loss after 20 cycles. The high carbon loading is again a common factor in the cathodes that show good cycle stability over a large number of cycles, but would seriously reduce the energy density of the cathodes in practice.
2.5.8.2 Electrospinning to Form Li$_2$MnSiO$_4$/Carbon Nanofiber Cathodes

Electrospinning is a well-known technique that has been applied to produce fibers of many materials including silicon electrodes consisting of silicon nanoparticles encapsulated in a carbon sheath [47]. Earlier attempts to produce Cr-doped Li$_2$MnSiO$_4$ nanofibers resulted in material with a large MnO impurity [48]. The combined effect of Cr doping and nanofiber morphology showed an improved capacity and capacity retention with cycling compared to Li$_2$MnSiO$_4$ nanoparticles but the capacity faded with repeated cycling. Park et al. [49] used electrospinning to produce composite Li$_2$MnSiO$_4$/C nanofibers that consisted of nanoparticles of single-phase Li$_2$MnSiO$_4$ embedded in a carbon matrix (Fig. 2.17). The nanocrystals of the active phase and the carbon layer were synthesized simultaneously to

![Fig. 2.17](image_url) (a) SEM image of as-spun Li$_2$MnSiO$_4$/C nanofibers, (b) low-magnification TEM image, (c) STEM image, (d) high-magnification TEM image, (e) HRTEM image, and (f) EDX line scan elemental mapping image for Li$_2$MnSiO$_4$/C nanofibers. The insert in e is the SAED pattern of Li$_2$MnSiO$_4$ (Reprinted from Park et al. [49], Fig. 2.1, copyright (2014). With kind permission from Springer Science and Business Media)
produce the composite product. The one-dimensional nanofibers had a diameter of approximately 400 nm, and Li$_2$MnSiO$_4$ nanoparticles of ~30 nm diameter were confined within the fibers. TGA analysis revealed that there was only ~6 wt% carbon in the nanofibers. The electrochemical performance of these composite nanofibers was shown to be superior to that of nanoparticles of Li$_2$MnSiO$_4$ as well as conventional carbon-coated nanoparticles with a first cycle discharge capacity of 197 mAg$^{-1}$ at room temperature at a current rate of 0.05C (1C = 330 mAg$^{-1}$) (Fig. 2.18a). Capacity retention over 20 cycles was reported to be 77 %, comparable to that of the nanoparticulate samples tested, indicating that the amorphization commonly reported for these materials was not inhibited by the

---

**Fig. 2.18** The electrochemical properties of Li$_2$MnSiO$_4$ NPs, Li$_2$MnSiO$_4$/C NPs, and Li$_2$MnSiO$_4$/C NFs in the potential window of 1.5~4.8 V at a rate of 0.05 C at room temperature. (a) The first charge–discharge profile, (b) cycle performance, and (c) rate capability at various C rates (Reprinted from Park et al. [49], Fig. 2.1, copyright (2014). With kind permission from Springer Science and Business Media)
nanofiber morphology (Fig. 2.18b). The one-dimensional nanofiber morphology was shown by impedance spectroscopy to improve the electron transport and rate capability of the Li$_2$MnSiO$_4$ nanofiber electrodes compared to electrodes consisting of active material with conventional carbon coating (Fig. 2.18c). However, the electrochemical capacity and capacity retention with cycling of the Li$_2$MnSiO$_4$ nanofiber electrodes was inferior to that reported for the RGO-supported material discussed in 5.8.1 although this may be as a consequence of the lower total carbon content in the electrode (~26 %) compared to ~46 % for the RGO composites [46].

2.5.9 Macroporous and Mesoporous Structures

Ordered porous materials with both macro- and mesopores have been synthesized and applied widely in materials chemistry. The use of ordered porous morphology for the active material in lithium ion battery electrodes has attracted much attention from researchers [50–55]. This method of nanostructuring cathodes has recently also been applied to polyanionic cathodes like LiFePO$_4$ [55, 56]. Porous cathodes have several advantages including the easy penetration of the electrolyte into the bulk of the material, the reduction of the diffusion distance in the thin walls of the pores, and the accommodation of volumetric changes in the material during lithium insertion and extraction [51]. Introducing porosity into cathodes unavoidably decreases the volumetric energy density of the material but, if the gain in performance is significant, then the actual practical energy density may still be improved [52].

2.5.9.1 Mesoporous, Carbon-Supported Li$_2$MnSiO$_4$

Kawase et al. [57] attempted to deposit Li$_2$MnSiO$_4$ nanoparticles within the mesopores of an ordered mesoporous carbon matrix as an alternative to a distributed carbon coating on the surface of nanoparticles. The carbon matrix would then function to enhance the conductivity of the composite cathode. However, x-ray diffraction analysis showed that these samples contained major impurities of MnO and that the peaks assigned to Li$_2$MnSiO$_4$ were poorly defined.

2.5.9.2 Mesoporous Cathodes from a Mesoporous Silica Template

Gummow and He [58] used a SBA-15 silica template and an emulsion synthesis technique to produce a Mn-deficient lithium manganese silicate product that retained the mesoporous symmetry of the SBA-15 precursor (Fig. 2.19). Cycling results for this material showed higher capacities and better capacity retention with cycling compared to nonporous material with the same composition (Fig. 2.20). This report showed the retention of the mesoporous symmetry with cycling although the crystallinity of the lithium manganese silicate was lost during the
cycling process. This indicated that the amorphization previously reported for this material was not prevented by the mesoporous morphology. However, despite this loss of crystallinity, the sample cycled with excellent reversibility in the constant current-constant voltage regime.

Fig. 2.19 Images of the mesoporous Mn-deficient lithium manganese silicate prepared from an SBA-15 mesoporous SiO₂ template (a) SEM image and (b) TEM image (Reproduced from Gummow and He [58] with permission of The Royal Society of Chemistry)

Fig. 2.20 Galvanostatic cycling curves of half cells containing mesoporous cathodes: (a) cycles 1–10 CC cycling and (b) cycles 12–20 CC–CV cycling at room temperature and 20 mAg⁻¹ (Reproduced from Gummow and He [58] with permission of The Royal Society of Chemistry)
2.5.9.3 Hierarchical Macroporous and Microporous Li$_2$MnSiO$_4$

He and Manthiram [59] reported the use of hierarchical macro- and mesoporous Li$_2$MnSiO$_4$ cathodes produced using a hard template of close-packed 430 nm diameter poly(methyl methacrylate) (PMMA) spheres. The PMMA template was impregnated with the precursors for Li$_2$MnSiO$_4$ as well as a resin as carbon source. After decomposing the PMMA by heating in an inert atmosphere, a replicated, ordered macroporous Li$_2$MnSiO$_4$ product was formed with average pores of 200–400 nm (Fig. 2.21a–c). The pore walls were composed of 20–40 nm nanocrystals of Li$_2$MnSiO$_4$ with additional disordered mesopores between the nanocrystals in the walls. Decomposition of the resin also provided a carbon coating on the surface of the nanocrystals to improve electrical conductivity with ~20 wt.% residual carbon in the composite cathodes. In electrochemical testing, the maximum discharge capacity reached was 200 mAh/g on the 3rd discharge cycled at C/10 (16 mAg$^{-1}$) at 45 °C. At higher current rates, C/2 and C, the highest recorded capacities were 160 and 119 mAh/g, respectively. Capacity retention was good with about 112% of the initial capacity reported after 40 cycles at 1 C (95 mAh g$^{-1}$) with a total carbon content in electrodes of ~30%. Higher capacities

![Fig. 2.21](image-url)
were recorded for cells cycled at 55 °C but the capacity retention with cycling was reduced and found to be very sensitive to the voltage range that was chosen (Fig. 2.22).

2.6 Spray Pyrolysis

Spray pyrolysis is a commonly used technique to produce ceramic powders with a well-defined composition and a narrow particle size distribution [60]. Spray pyrolysis, combined with high-energy ball milling, has recently been applied to form Li$_2$MnSiO$_4$/C composites using glucose as the carbon source [61–63]. Shao and Taniguchi found the best performance for composites produced with a 0.1 mol l$^{-1}$ glucose solution to give 12 wt% residual carbon in the composite and 15.2 wt% C in
the electrodes with primarily particles in the 40 nm range. The 1st cycle discharge capacity was approximately 170 mAhg\(^{-1}\) at a current rate of 0.1 C with cycling in the range 1.5–4.8 V. However, even with this optimized composition, the cathodes showed poor capacity retention with cycling at room temperature with a residual capacity of only \(\sim 100\) mAg\(^{-1}\) after 20 cycles. Moriya et al. [61] adopted a very similar strategy except that in their synthesis the glucose was added into the mixture prior to the pyrolysis step. In this way, the glucose was carbonized at the same time as the formation of the Li\(_2\)MnSiO\(_4\) powder. The residual carbon in the composite was also determined to be 12 wt% in close agreement to the study of Shao et al. [63] but the composite electrodes consisted of 20 mg of active material and 15 mg of teflonized acetylene black (TAB) resulting in a much higher carbon loading in the electrodes than in the case of Shao et al. The particle size was also found to be only 10–20 nm and particles had an amorphous carbon coating. Moriya et al. [61] reported a stable discharge capacity of \(\sim 200\) mAhg\(^{-1}\) at 0.1 C and 25 °C for 60 cycles but it should be noted that the lower voltage cutoff was 1 V and the capacity above 1.5 V was only approximately 150 mAhg\(^{-1}\). The authors also found it necessary to replace the anode and anode current collector after every 20 cycles because of degradation during cycling. This further serves to confirm the findings of other investigators [44, 46] that stable cycling of Li\(_2\)MnSiO\(_4\) cathodes is possible with high carbon loading. Moriya et al. [62] carried out a detailed structural analysis of cycled cathodes of their spray-pyrolyzed Li\(_2\)MnSiO\(_4\) material. The material could be indexed as the \(Pmn_2_1\) orthorhombic polymorph of Li\(_2\)MnSiO\(_4\). In contrast to other structural studies, Moriya et al. found that although the long-range order of the sample was lost on charge, when lithium was subsequently reinserted on discharge, the peaks corresponding to Li\(_2\)MnSiO\(_4\) reappeared (Fig. 2.23). Pair distribution function (PDF) analysis indicated that the local structural order was disrupted when lithium was extracted due to local distortions of the MnO tetrahedra to accommodate the smaller Mn\(^{3+}\) and Mn\(^{4+}\) cations generated on charge. Importantly, the structural order was restored when lithium was reinserted, as evidenced by the re-appearance of the diffraction peaks.

### 2.7 Conclusion

After more than 15 years of research effort by lithium-ion battery researchers, there is now a good understanding of many of the structural and electrochemical properties of Li\(_2\)MnSiO\(_4\). The wide range of synthesis methods and nanostructuring strategies that have been explored shows the persistence and determination of researchers to find the optimum methods to get the most out of this material in terms of electrochemical performance. Sophisticated nanostructures, e.g., nanosheets, nanofibers, and complex hierarchical porous structures, have been formed and have delivered dramatic improvements in high rate performance due to the increased surface area for interaction with the electrolyte and the reduced diffusion length for lithium ions. Recent structural studies by Moriya et al. [62]
have also indicated that nanostructuring, coupled with high carbon loading, can allow the structure to reversibly accommodate the distortions to the MnO₄ tetrahedra that inevitably occur with Li extraction.

References


Fig. 2.23 Synchrotron-based HE-XRD patterns of the as-prepared, 1st-charged, 1st-discharged, 5th-charged, and 5th-discharged samples and the teflonized acetylene black. The carbon-hybridized Li₂MnSiO₄ samples were charged or discharged in the delithiation of 1.25 Li/formula unit. The hkl indices refer to the underlining β-Li₂MnSiO₄ structure (Reprinted from Moriya et al. [62]. Copyright 2014, with permission from Elsevier)
42. Rangappa D, Murukanahally KD, Tomai T et al (2012) Ultrathin nanosheets of Li2MnSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett 12:1146–1151
43. Devaraju MK, Tomai T, Unemoto A et al (2013) Novel processing of lithium manganese silicate nanomaterials for Li-ion battery applications. RSC Adv 3:608–615
45. Ha SH, Jeong YS, Lee YJ (2013) Free standing reduced graphene oxide film cathodes for lithium ion batteries. ACS Appl Mater Interfaces 5:12295–12303
55. Doherty CM, Caruso RA, Smarsly BM et al (2009) Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chem Mater 21:2895–2903
56. Vu A, Stein A (2011) Multiconstituent synthesis of LiFePO4/C composites with hierarchical porosity as cathode materials for lithium ion batteries. Chem Mater 23:3237–3245
58. Gummow RJ, He Y (2014) Mesoporous manganese-deficient lithium manganese silicate cathodes for lithium-ion batteries. RSC Adv 4:11580–11584


Nanomaterials in Advanced Batteries and Supercapacitors
Ozoemena, K.I.; Chen, S. (Eds.)
2016, XV, 567 p. 261 illus., 189 illus. in color., Hardcover
ISBN: 978-3-319-26080-8