Contents

1 Historical Introduction ... 1
 1.1 The Main Landmarks in the Development of the Special Theory of Relativity ... 1

1.2 The Principle of Relativity of Galileo. Galileo’s Invariance Hypothesis. The Law of Inertia. Inertial Frames of Reference ... 4
 1.2.1 The Galilean Transformation ... 5

1.3 Rømer and the Speed of Light ... 6

1.4 Newton’s Laws of Motion. Inertia and Inertial Frames of Reference ... 10
 1.4.1 The Invariance of Newton’s Second Law of Motion Under the Galilean Transformation 11

1.5 The Aberration of Light .. 12
 1.5.1 The Discovery by Bradley of the Aberration of Stellar Light ... 14

1.6 Arago’s Measurements Concerning the Constancy of the Speed of Light from Stars ... 18

1.7 Measurements of the Speed of Light in the Laboratory 21
 1.7.1 The Possibility of Dependence of the Speed of Light in Vacuum on Its Frequency .. 23

1.8 Attempts to Measure the Dragging of Aether by Moving Media ... 23
 1.8.1 The Experiment of Fizeau .. 24
 1.8.2 The Experiment of Hoek .. 27

1.9 Maxwell’s Equations and the Wave Equation 28

1.10 The Experiment of Michelson and Morley 30

1.11 The Lorentz-FitzGerald Contraction Hypothesis 37

1.12 The Increase of the Mass of the Electron with Speed 38

1.13 The Invariance of Maxwell’s Equations and the Lorentz Transformation ... 42

1.14 The Formulation of the Special Theory of Relativity 43

References .. 44
Prolegomena

2 Inertial Frames of Reference

2.1 The Earth, the Sun and the Galaxy as Inertial Frames of Reference

3 The Calibration of a Frame of Reference and the Synchronization of Its Clocks

4 The Relativity of Simultaneity

5 The Relativity of Time and Length

5.1 The Invariance of the Dimensions of a Body Which Are Perpendicular to Its Velocity

6 The Inevitability of the Special Theory of Relativity

Relativistic Kinematics

3.1 The Lorentz Transformation for the Coordinates of an Event

3.1.1 The Contraction of Length

3.1.2 The Dilation of Time

3.2 The Transformation of Velocity

3.2.1 The Transformation of the Components of Velocity

3.2.2 The Transformation of the Magnitude of Velocity

3.2.3 The Transformation of the Lorentz Factor, γ

3.2.4 Speed c as an Upper Limit for Speeds

3.3 The Transformation of Acceleration

3.3.1 Proper Acceleration

Applications of Relativistic Kinematics

4.1 The ‘Meson’ Paradox

4.1.1 Experimental Verification of the Dilation of Time with Muon Experiments at CERN

4.2 The Apparent Focusing of Fast Charged Particle Beams Due to the Dilation of Time

4.3 The Sagnac Effect

4.4 Clocks Moving Around the Earth

4.5 The Experiment of Hafele and Keating

4.6 Einstein’s Train

4.7 The Twin Paradox

4.8 Motion with a Constant Proper Acceleration

4.8.1 The Dilation of Time and Journeys in Space
4.9 Two Successive Lorentz Transformations.
 The Wigner Rotation .. 129
4.9.1 The Thomas Precession ... 133
4.9.2 The Thomas Precession in the Cases
 of a Planetary or a Stellar System 135
References ... 137

5 Optical Phenomena ... 139
5.1 The Aberration of Light ... 139
5.2 Fizeau’s Experiment. Fresnel’s Aether Dragging Theory 141
5.3 The Doppler Effect ... 142
 5.3.1 The Longitudinal Doppler Effect 143
 5.3.2 The General Doppler Effect 146
 5.3.3 The Experimental Verification of the Relativistic
 Terms of the Doppler Effect ... 152
5.4 Relativistic Beaming or the Headlight Effect 155
 5.4.1 Synchrotron Radiation or Magnetic
 Bremsstrahlung .. 160
5.5 The Forces Exerted by Light 161
References ... 162

6 Relativistic Dynamics ... 163
6.1 The Definition of Relativistic Momentum.
 Relativistic Mass ... 163
6.2 Relativistic Energy .. 166
6.3 The Relationship Between Momentum and Energy 170
 6.3.1 Units of Energy, Mass and Momentum 170
6.4 Classical Approximations .. 172
6.5 Particles with Zero Rest Mass 175
6.6 The Conservation of Momentum and of Energy 176
6.7 The Equivalence of Mass and Energy 178
 6.7.1 The Validity of the Conservation of Momentum
 and Energy During the Transmutation of Nuclei
 and the Annihilation and Creation of Particles 179
6.8 The Transformation of Momentum and Energy 186
6.9 The Zero-Momentum Frame of Reference 189
6.10 The Transformation of the Total Momentum
 and the Total Energy of a System of Particles 193
 6.10.1 The Invariance of the Quantity $E^2 - c^2p^2$
 for a System of Particles ... 194
6.11 The Collision of Two Identical Particles 197
 6.11.1 Experimental Test of the Special Theory
 of Relativity with Colliding Electrons 200
6.12 The Transformation of Force 200
6.13 Motion Under the Influence of a Constant Force.
The Motion of a Charged Particle in a Constant Uniform Electric Field. 203
6.14 The Motion of a Charged Particle in a Constant Homogeneous Magnetic Field. 205
References .. 211

7 Applications of Relativistic Dynamics 213
7.1 The Compton Effect ... 213
7.2 The Inverse Compton Effect .. 217
7.3 The Consequences of the Special Theory of Relativity on the Design of Particle Accelerators 220
 7.3.1 Linear Accelerators ... 220
 7.3.2 Cyclotron, Synchrocyclotron and Synchrotron 222
7.4 Mass Defect and Binding Energy of the Atomic Nucleus 224
 7.4.1 Nuclear Reactions and Binding Energy 226
 7.4.2 The Experimental Test of the Equivalence of Mass and Energy in Nuclear Reactions 230
7.5 Threshold Energy .. 232
7.6 The General Equations for the Motion of a Relativistic Rocket ... 237
 7.6.1 The Photon Rocket ... 240
References .. 242

8 Minkowski’s Spacetime and Four-Vectors 243
8.1 The ‘World’ of Minkowski ... 243
 8.1.1 The Minkowski Diagram of the Lorentz Transformation ... 247
 8.1.2 Causality. Past, Present and Future 250
 8.1.3 The Minkowski Diagram for the Effect of Length Contraction ... 252
 8.1.4 The Minkowski Diagram for the Effect of Time Dilation .. 253
 8.1.5 A Minkowski Diagram for the Doppler Effect 256
8.2 Four-Vectors .. 258
 8.2.1 The Position Four-Vector 260
 8.2.2 The Four-Vector of Velocity 261
 8.2.3 The Four-Vector of Acceleration 263
 8.2.4 The Energy-Momentum Four-Vector 265
 8.2.5 The Four-Vector of Force 270
 8.2.6 The Four-Vectorial Equation of Motion 272
Reference .. 272
9 Electromagnetism .. 273
 9.1 Introduction .. 273
 9.2 The Invariance of Electric Charge 275
 9.3 The Transformations of the Electric Field and the Magnetic Field 278
 9.4 Fields of a Moving Electric Charge 282
 9.4.1 Ionization Caused by a Relativistic Charged Particle 285
 9.5 The Derivation of the Differential Form of the Biot-Savart Law from Coulomb’s Law 289
 9.6 The Force Exerted on a Moving Charge by an Electric Current 292
References ... 295

10 Experiments ... 297
 10.1 The Speed of Light 297
 10.1.1 Historic Measurements of the Speed of Light 297
 10.1.2 The Non-dependence of the Speed of Light in Vacuum on the Motion of the Source or of the Observer 298
 10.1.3 The Non-dependence of the Speed of Light in Vacuum on Frequency 301
 10.2 The Aether .. 303
 10.3 The Dilation of Time 305
 10.4 The Relativistic Doppler Effect 306
 10.5 The Contraction of Length 311
 10.6 The Test of the Predictions of Relativistic Kinematics 312
 10.7 The Sagnac Effect 312
 10.8 The Relativistic Mass 314
 10.9 The Equivalence of Mass and Energy 314
 10.10 The Test of the Predictions of Relativistic Dynamics 315
 10.11 The Invariance of Electric Charge 317
References ... 318

Appendix 1: The Paradox of the Room and the Rod 321

Appendix 2: The Appearance of Moving Bodies 325

Appendix 3: The Derivation of the Expression for the Relativistic Mass in the General Case 333

Appendix 4: The Invariance of the Equations of Maxwell and the Wave Equation Under the Lorentz Transformation 337
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Appendix 5: Tachyons</td>
<td>355</td>
</tr>
<tr>
<td>6</td>
<td>Appendix 6: The Lorentz Transformation in Matrix Form</td>
<td>359</td>
</tr>
<tr>
<td>7</td>
<td>Appendix 7: Table of Some Functions of the Speed</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td>Solutions to the Problems</td>
<td>373</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>473</td>
</tr>
</tbody>
</table>
The Special Theory of Relativity
Foundations, Theory, Verification, Applications
Christodoulides, C.
2016, XVII, 480 p. 130 illus., Softcover
ISBN: 978-3-319-25272-8