Chapter 2
Forcings

Kyung-Ae Park, Kyung-Il Chang, Hanna Na and Uk-Jae Jung

Abstract The East Sea (Japan Sea) is strongly influenced by the Asian monsoon with prevalent northerly and southerly winds in winter and summer, respectively. It gains heat from April to August and loses heat in other seasons with annual net heat loss ranging from 25 to 108 W m\(^{-2}\). Extremely strong winds of severe Siberian cold-air outbreaks typify the winter season from December to February, which occasionally results in cold bottom water formation. A spatially distinct pattern of wind stress curl during the outbreak periods appears south of Vladivostok and near East Korea Bay. The cold-air outbreaks result in significant surface heat losses through sensible and latent heat fluxes exceeding 500 W m\(^{-2}\), which was estimated to be even larger, as high as 1000 W m\(^{-2}\), during a deep convection period in winter. Wintertime surface heat loss is also an important factor in deep penetration of frontal subduction, resulting in the formation of East Sea Intermediate Water found south of the subpolar front. Net heat loss at the sea surface in the East Sea is compensated by its warm inflow-outflow system. Inflow of the Tsushima Warm Current through the Korea Strait (2.6 Sv), which is balanced with outflows through the Tsugaru Strait and the Soya Strait, exhibits large
volume transports in summer to autumn and small in winter to spring with a range of about 1 Sv (1 Sv = 10^6 m^3 s^{-1}). While the mean transport is larger in the Tsugaru Strait compared to that in the Soya Strait, the seasonal variability is larger in the Soya Strait.

Keywords Sea surface wind · Surface heat flux · Volume transport · Tsushima Warm Current · Korea Strait · Tsugaru Strait · Soya Strait · East Sea (Japan Sea)

2.1 Introduction

The East Sea has many characteristics similar to those of the global ocean and may be considered its miniature. There are remarkable atmospheric and oceanic forcings such as wind forcing, surface heat flux at the air-sea interface, and boundary flux through straits, which have strongly affected the basin-wide surface-to-deep-water circulations, formation and distribution of water masses, and many other properties of the East Sea. It is almost impossible to discuss substantial changes in water masses, currents, and circulations without a priori knowledge of the spatial and temporal variability of the fundamental forcing fields over the East Sea. Thus, in the following sections, we have attempted to review the previous literature and recent results on wind forcing (Sect. 2.2), surface heat flux (Sect. 2.3), and boundary flux (Sect. 2.4). Section 2.5 is a summary, and a discussion of remaining issues.

2.2 Surface Wind

2.2.1 Accuracy of Satellite Scatterometer Wind Vectors

Satellite scatterometers have measured near-surface wind velocity vectors under all weather conditions with accuracy of less than 2 m s^{-1} in speed and 20° in direction and spatial resolution of 25 km (Jet Propulsion Laboratory 1998). Scatterometers such as NASA Scatterometer (NSCAT) of the ADvanced Earth Observing Satellite (ADEOS), SeaWinds of the Quick Scatterometer (QuikSCAT), and the Advanced Scatterometer (ASCAT) of Europe’s Meteorological Operational Satellite Program—A have been successfully operated with relatively high spatial and temporal coverage since September 1996.

Over the decade prior to the launch of satellite scatterometers in the 1990s, wind fields for the period 1978–1997 produced by Na et al. (1997), called ‘Na wind’ hereafter, was the most renowned in the scientific community and extensively utilized for diverse studies in the seas adjacent to Korea (e.g. Kim and Yoon 1996). Unlike automatic weather station (AWS) measurements, it is not based on direct measurements of wind vectors but on those indirectly calculated from the distribution of atmospheric pressure on daily weather maps using the Cardone model (Cardone 1969). The Na wind field has both similarity and dissimilarity to the scatterometer wind field. Comparing the two, the spatial structures are mostly
coherent on large basin-wide scales, but significant differences and energy loss are
detected in the Na wind at spatial scales less than 100 km (Park et al. 2003).

Comparison of satellite scatterometer-derived wind speeds from NSCAT and
QuikSCAT/SeaWinds with buoy-measured wind speeds reveals relatively small
root-mean-squared (rms) errors with a range of 0.9–1.3 m s$^{-1}$ in the East Sea; this
meets the scatterometer mission error limit requirement of 2 m s$^{-1}$ as shown in
Fig. 2.1 (Ebuchi 1997; Lee 1998; Park et al. 2003; Kim et al. 2005). However,
scatterometer wind directions show large rms errors of 15°–40° due to ambiguity
problems, random and systematic errors, and the uncertainty of geophysical
model functions (Freilich 1997; Park et al. 2003). Regional biases of wind vec-
tors in the East Sea are large at low wind speeds in particular; these biases depend
on wind speed and atmospheric stability in the marine-atmospheric boundary
layer (MABL) (Park and Cornillon 2002; Chelton et al. 2004; Park et al. 2006a).

In addition, scatterometers have saturation problems at high wind speeds causing
an underestimation of wind speeds when compared with buoy measurements of

Fig. 2.1 Comparison of satellite-derived winds with winds from three Japan Meteorological
Agency (JMA) buoys in the seas adjacent to Korea: a NSCAT wind speed, b NSCAT wind direc-
tion, c QuikSCAT wind speed, and d QuikSCAT wind direction (from Kim et al. 2005)
winds (Liu and Xie 2006). Since the oceanic near-surface wind field also plays an important role in the estimation of latent heat flux and sensible heat flux, it should be continuously produced with high quality to reduce uncertainty in the estimation of net heat flux in the East Sea.

Since a satellite scatterometer observes winds at relatively low resolution of about 25 km, scatterometer data are not readily applicable in coastal areas. By contrast, Synthetic Aperture Radar (SAR) can provide a high-resolution wind field even within 25 km from the coast (Fig. 2.2). In the East Sea, some studies have been performed to validate the SAR-observed winds by comparison with winds from moored buoys, AWS near the coast, and numerical models (Isoguchi and Kawamura 2007). Overall, the rms errors of wind speeds from C-band and L-band SARs meet the error limit of 2 m s\(^{-1}\) in the East Sea (Kim and Moon 2002; Kim et al. 2010, 2012; Kim and Park 2011). The high-resolution coastal winds of the East Sea are anticipated to promote deep understanding of physical and biological processes at the coastal areas.

2.2.2 Spatial and Temporal Variability of Near-Surface Winds

Figure 2.3 shows the distribution of monthly-mean wind vectors calculated using QuikSCAT data from 2000 through 2008. The scatterometer wind fields reveal detailed spatial structures with large spectral energy even at high wavenumbers (Lee 1998; Park et al. 2003). The monthly-mean speeds range from 3 to 12 m s\(^{-1}\) over the basin. Overall, the speeds are larger during the wintertime, with values greater than 8 m s\(^{-1}\) beginning in November and reaching a peak in January (>10 m s\(^{-1}\)), particularly south of Vladivostok and along the Primorye coast. Northwesterly cold-air outbreaks through Vladivostok in winter cause the formation of cold bottom water in the East Sea and drive a cyclonic circulation in the Japan Basin (e.g. Kawamura and Wu 1998; Chen et al. 2001; Chu et al. 2001; Kim et al. 2002; Dorman et al. 2004). Strong winds also appear over East Korea Bay.
Southerly winds begin to blow in April, with lowest speeds of less than 5 m s$^{-1}$ in June, and last into August (Fig. 2.3) when the wind direction changes from southerly to northerly. Northerly winds continue through fall and winter until March of the next year.

Northerly winds passing through the orographic gap near Vladivostok begin in October, become stronger at \sim10 m s$^{-1}$ in December, achieve greatest strength of about 12 m s$^{-1}$ as cold-air outbreaks in January, and last, at \sim8 m s$^{-1}$, until February (Fig. 2.3). During such cold outbreaks, the 0 °C surface air isotherm extends well southward of 40°N, the surface heat losses in the center of the East

(see Fig. 1.1) (Park et al. 2003; Nam et al. 2005).
Sea can exceed 600 W m\(^{-2}\), and cloud streets with individual roll clouds cover most of the East Sea, extending from the Russian coast to Honshu (Dorman et al. 2004). The average number of strong cold-air outbreaks per winter (November–March) season is about 13, occupying 39 % of the winter period and contributing 43 % of the net heat loss from the East Sea (Dorman et al. 2004). More details about the surface buoyancy flux are in Sect. 2.3.

Figure 2.4a shows the first EOF mode of 9-year QuikSCAT wind speed anomalies over the East Sea from 2000 through 2008, accounting for 44.3 % of the total variance. Overall, it represents the strong winds from the continental side to the offshore region during cold-air outbreaks in winter. The winds are spatially shielded by mountainous land masses between Vladivostok and the northeastern part off the Primorye coast, producing low speeds in that region (Park et al. 2003). The time-varying amplitudes usually reach a peak in January each year (Fig. 2.4c). Large values over the southeastern region near the Japanese coast are related to relatively high wind speeds due to strengthening of unstable
condition within the MABL (Park and Cornillon 2002; Chelton et al. 2004; Park et al. 2006a; Shimada and Kawamura 2006). The second EOF mode (Fig. 2.4b), explaining 10.1% of the QuikSCAT wind variance, is dominant in the region between the Russian coast and Hokkaido from 40°N to 48°N in winter. The impact of such wind forcing on oceanic circulation has not been studied vigorously and should be studied in the future.

2.2.3 Wind Stress and Its Curl

Nam et al. (2005) analyzed near-shore and off-shore wind stress and showed typical amplitudes of wind stress off the east coast of Korea in the seasonal (>90 days), intra-seasonal (20–90 days), and synoptic (2–20 days) bands are 0.20, 0.03, and 0.04–0.18 N m\(^{-2}\), respectively. The synoptic-band wind stress shows seasonal modulation by becoming stronger in winter (0.5–0.6 N m\(^{-2}\)) than in summer. The wind stress curl causes a pair of positive and negative values on the left and right sides of the downwind air flow, owing to the intensification of winds through the orographic gap near Vladivostok (Kawamura and Wu 1998; Park et al. 2003; Dorman et al. 2004; Nam et al. 2005; Shimada and Kawamura 2006). Another paired structure of positive/negative curl is found off Wonsan over East Korea Bay, for which the mechanism is similar to that south of Vladivostok, being driven by winds through an orographic gap between mountains (Park et al. 2003; Nam et al. 2005). Wind stress curl fields result also from accelerations and decelerations of wind as it blows over subpolar fronts in the central part of the East Sea (Shimada and Kawamura 2006).

The positive wind stress curl of the dipole structure occupying most of the East Sea in winter generates a large basin-wide cyclonic circulation (Yoon et al. 2005). The cyclonic wind stress curl in East Korea Bay may play an important role in the separation of the East Korea Warm Current (EKWC) (Kim and Yoon 1996; Yoon et al. 2005). Trusenkova et al. (2009) indicated that wind stress curl can be an additional factor forcing the Tsushima Warm Current (TWC) to branch off at the Korea Strait into the EKWC and the Offshore Branch. Sensitivity of the circulation to the different wind forcings has proved to be significant, which means the wind forcing, along with surface buoyancy forcing, is substantial in determining the different patterns and magnitudes of the basin-wide circulation (Hogan and Hulbert 2000).

2.3 Surface Heat Flux

2.3.1 Comparison of Heat Flux Estimates

Heat flux estimates in the East Sea are available from several studies (Table 2.1). The surface heat fluxes are usually computed by means of bulk formulas using atmospheric and marine surface data at the air-sea interface. The net heat flux \(Q_{\text{net}}\)
Table 2.1 Comparisons of summertime (Sum.; June–August), wintertime (Win.; December–February), and annual mean (Ann.) latent, sensible, and net heat fluxes (W m$^{-2}$) in the East Sea

<table>
<thead>
<tr>
<th>Sources</th>
<th>Periods</th>
<th>Q_e</th>
<th>Q_h</th>
<th>Q_{net}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kato and Asai (1983)</td>
<td>78–79</td>
<td>−29</td>
<td>−169</td>
<td>−102</td>
</tr>
<tr>
<td>Kondo et al. (1994)</td>
<td>65–90</td>
<td>−26</td>
<td>−124</td>
<td>−78</td>
</tr>
<tr>
<td>Park et al. (1995)</td>
<td>61–90</td>
<td>−17</td>
<td>−161</td>
<td>−90</td>
</tr>
<tr>
<td>Hirose et al. (1996)</td>
<td>60–90</td>
<td>−35</td>
<td>−143</td>
<td>−93</td>
</tr>
<tr>
<td>Ahn et al. (1997)</td>
<td>80–94</td>
<td>−141</td>
<td>−41</td>
<td>−41</td>
</tr>
<tr>
<td>Na et al. (1999)</td>
<td>78–95</td>
<td>−42a</td>
<td>−172a</td>
<td>−114a</td>
</tr>
<tr>
<td>Hong et al. (2005)</td>
<td>88–00</td>
<td>−48</td>
<td>−144</td>
<td>−108</td>
</tr>
<tr>
<td>OAFlux</td>
<td>89–09</td>
<td>−28.6</td>
<td>−163.1</td>
<td>−97.7</td>
</tr>
<tr>
<td>ECMWF</td>
<td>91–01</td>
<td>−28.4</td>
<td>−145.2</td>
<td>−95.1</td>
</tr>
</tbody>
</table>

Flux estimates from the OAFlux products and ECMWF model results are also shown

aValues estimated from figures, by eye
Forcings

is the sum of four components, \(Q_{\text{net}} = Q_s + Q_b + Q_h + Q_e \), where \(Q_s \) is the net shortwave radiation flux, \(Q_b \) the net long wave radiation flux, \(Q_h \) the sensible heat flux, and \(Q_e \) the latent heat flux. Different parameterizations were used for each of these components. As a sign convention, positive (negative) heat flux components denote oceanic heat gain (loss).

Heat flux estimates in gridded boxes with 0.2°–2° resolutions based on different bulk formulas and long-term averaged input variables show considerable differences (Table 2.1, Fig. 2.5). We have also compared those previous estimates with long-term mean heat fluxes from 1991 to 2001 produced by the European Centre for Medium-range Weather Forecast (ECMWF) model (Dorman et al. 2005), and from 1989 to 2009 obtained from the Objectively Analyzed air-sea Fluxes (OAFlux) project at the Woods Hole Oceanographic Institution (Yu and Weller 2007). The annual climatological \(Q_{\text{net}} \), winter \(Q_h \), and winter \(Q_e \) from those estimates all show negative values, indicating oceanic heat loss, with amplitudes ranging 25–108, 79–144, and 124–172 W m\(^{-2}\), respectively. The long-term mean \(Q_{\text{net}} \) values from the ECMWF model, OAFlux products, Park et al. (1995), and Hirose et al. (1996) (HKY96 hereafter) all show similar values of about \(-50\) W m\(^{-2}\) (corresponding to about 0.05 PW over the entire East Sea), which is about the same as the surface heat loss over the East China Sea (0.04 PW; Liu et al. 2010). Net heat losses in Kato and Asai (1983) and Kondo et al. (1994), however, are smaller ranging from \(-35\) to \(-25\) W m\(^{-2}\). The other studies reported larger-magnitude estimates between \(-108\) and \(-70\) W m\(^{-2}\), mainly due to their larger winter \(Q_h \) or \(Q_e \) (Ahn et al. 1997; Na et al. 1999 (NSL99 hereafter); Hong et al. 2005). The relatively wide range of the long-term estimates may arise from differences of datasets used in the calculations, parameterizations used in the bulk formulas, temporal resolutions of input data (NSL99), and different time periods reflecting interannual variation of the fluxes. The range of interannual variation is from about \(-35\) to \(-22\) W m\(^{-2}\) with a peak-to-peak difference of \(-13\) W m\(^{-2}\), according to a time series of annual mean \(Q_{\text{net}} \) from the OAFlux product (not shown); this implies that the flux discrepancies in Table 2.1 are not due to interannual variation of the heat fluxes. Summer \(Q_h \) and \(Q_e \) magnitudes are only about 1–6 and 11–33 % of their respective winter values, and the large heat loss in winter is caused by the dry and cold Siberian cold air mass sweeping over the warm sea surface.

2.3.2 Temporal Variations

The climatological annual cycles of heat fluxes obtained from the ECMWF model between 1991 and 2001 (Dorman et al. 2005) are shown in Fig. 2.5 together with those from the OAFlux products, HKY96, and NSL99. Also included are estimates from Dorman et al. (2004, 2005) based on highly accurate atmospheric datasets collected during surveys over the East Sea from research vessels. Mean \(Q_{\text{net}} \) values are positive from April to August with annual maximum heat gain between May and July, and negative from September to March with maximum heat loss.
Fig. 2.5 Monthly-averaged heat flux components: a net shortwave flux (Q_s), b net longwave flux (Q_l), c sensible heat flux (Q_h), d latent heat flux (Q_e), e net heat flux (Q_{net}). Heat flux components based on ECMWF model results between 1991 and 2001 are shown as solid lines, with shading to indicate standard deviations. Both the monthly mean values and standard deviations for ECMWF model results are taken from Dorman et al. (2005). Heat flux components estimated by Hirose et al. (1996), Na et al. (1999), Dorman et al. (2004, 2005), and from OAFlux products are indicated by open circles, closed circles, crosses, and triangles, respectively. f Monthly-averaged heat flux components from ECMWF models results
in December and January (Fig. 2.5). In summer, surface heat flux is dominated by shortwave (Q_s) and longwave (Q_b) radiations, while the heat loss components (Q_h, Q_e) show their annual minima due to reduced air-sea temperature differences and weak winds (Dorman et al. 2005). Major heat loss occurs in winter, especially through the latent (Q_e) and sensible (Q_h) heat fluxes. Heat losses due to sensible and latent fluxes between January and May estimated by NSL99 are larger than those from other estimates, yielding their larger net negative heat fluxes in those periods (see also Table 2.1).

The radiation components from the ECMWF model show large discrepancies compared with those components from other estimates. The ECMWF model results are characterized by large Q_s in summer and large heat loss through Q_h in winter. The Q_s in May 1999 (May 19–June 2) from Dorman et al. (2005) well matches the climatological Q_s from the ECMWF model. On the other hand, the Q_s value in July 1999 (July 19–August 11) shows a big discrepancy compared to the other climatological Q_s. The largest monthly Q_s values commonly occur in May due to the low cloud cover (HKY96). Compared to other estimates, the climatological monthly Q_b values from the ECMWF model and NSL99 have large-amplitude annual cycles due to large heat losses in winter.

Statistically significant negative Q_{net} trends occurred for 1984–2004 over the regions around the Kuroshio and the Kuroshio Extension, including the East Sea (Li et al. 2011). The negative trend over the East Sea was about -10 W m^{-2}/decade based on the OAFlux (Yu and Weller 2007). The negative Q_{net} trend was ascribed to the negative trend of Q_e due to an increase in the saturated specific humidity at the increasing sea surface temperature (Li et al. 2011). It should be noted that the trends based on a different dataset (National Oceanography Centre Southampton Flux Dataset v2.0, Berry and Kent 2009) show a negative trend in the southeastern East Sea, similar to the results from the OAFlux estimates, while a positive trend occurs in the northwestern East Sea.

The annual climatological Q_{net} over the East Sea is negative, the same as in western boundary current regions including the Kuroshio and the Kuroshio Extension (Han and Kang 2003; Li et al. 2011), meaning that, on average, the East Sea loses heat to the atmosphere. Further it implies that, under steady-state conditions, the East Sea receives heat from the surrounding seas by means of heat transported by the TWC through the Korea Strait (Isoda 1999; Han and Kang 2003). The estimated mean volume transport through the Korea Strait based on the surface heat flux is 2.20 Sv (HKY96), which is consistent with other independent estimates mentioned in Sect. 2.4.

2.3.3 Spatial Distribution

The spatial distribution of heat flux components shows significant spatial inhomogeneity especially in winter (HKY96). The long-term mean Q_{net} is negative over the East Sea except for a small region near the Russian coast, and its
spatial pattern is characterized by an increase in the heat loss toward the southeast (Fig. 2.6a). The large meridional difference in the Q_{net} field in winter (Fig. 2.6b) mainly determines the spatial pattern of the annual mean Q_{net}. And the wintertime heat losses due to the Q_e and Q_h (Fig. 2.6e, h) mainly account for the spatial

![Fig. 2.6](image)

Long-term annual mean heat flux components (left panel), and monthly mean heat flux components for January (middle panel) and for July (right panel). Q_{net}, Q_e, Q_h denote the sensible, latent, and net heat fluxes, respectively (Redrawn from Hirose et al. 1996)
variation of the Q_{net} field. The spatial distribution of long-term mean Q_b (not shown) is relatively homogeneous. The spatial variation of Q_s is mainly determined by latitude and cloudiness, and the long-term mean Q_s value is large (small) in the southwestern (northeastern) part of the East Sea (not shown).

2.4 Boundary Flux

2.4.1 Korea Strait

The Korea Strait is about 180 km wide and 330 km long with a sill depth of 140 m. It is divided by Tsushima Island into a narrower (about 40 km) but deeper (about 220 m maximum) western channel and a wider (about 140 km) but shallower (about 110 m maximum) eastern channel (Fig. 2.7). A number of continuous observations since the late 1990s (Table 2.2) have revealed mean and temporal variations of the currents and transports in the Korea Strait (Chang et al. 2004 and references therein).

The TWC flows northeastward through the Korea Strait with a maximum speed near the center of the strait in its upstream region (to the south of Tsushima Island), while it splits into two branches in the downstream region (to the north of Tsushima Island, Fig. 2.8; see also Sect. 4.2). The core in the western channel is generally stronger than that in the eastern channel. A southwestward countercurrent is observed in the lee of Tsushima Island and is explained as part of a current-induced island wake (Takikawa et al. 2005; Teague et al. 2005;
Table 2.2 Continuous observations in the straits

<table>
<thead>
<tr>
<th>Straits</th>
<th>Periods</th>
<th>Methods</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korea</td>
<td>March 1998–present</td>
<td>Cable voltage measurement across the Strait</td>
<td>Kim et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>February 1997–present</td>
<td>Vessel-mounted ADCP across the Strait (Camellia)</td>
<td>Takikawa et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>May 1999–March 2000</td>
<td>Bottom-mounted ADCP across the Strait (LINKS program)</td>
<td>Teague et al. (2006) and references therein</td>
</tr>
<tr>
<td></td>
<td>February 2002–present</td>
<td>High frequency radar around Tsushima Island</td>
<td>Yoshikawa et al. (2006)</td>
</tr>
<tr>
<td>Soya</td>
<td>August 2003–present</td>
<td>High frequency radar along the coast of Hokkaido</td>
<td>Ebuchi et al. (2006)</td>
</tr>
</tbody>
</table>

Fig. 2.8 Monthly averaged transports from May 1999 to March 2000, and averaged transport for the same period in the downstream region of the Korea Strait (to the north of Tsushima Island, Fig. 2.7) (from Teague et al. 2006). Units are 1 Sv = 10^6 m^3 s^-1. Each grid square is approximately 5-km across strait by 4 m in depth, except near the bottom where the depth dimension may be less.
Yoshikawa et al. 2010). Tidal currents in the Korea Strait, which are stronger than those inside the East Sea, have maximum speed about 50–70 cm s$^{-1}$ (Isobe et al. 1994; Teague et al. 2002; Takikawa et al. 2003). The maximum subtidal current is about 100 cm s$^{-1}$ (Teague et al. 2002; Takikawa et al. 2005).

Mean volume transport through the Korea Strait is estimated to be about 2.6 Sv from various observational data (Isobe 2008 and references therein); this is roughly one-tenth of the mean positive (northeastward) transport of the Kuroshio in the East China Sea (24.0 ± 0.9 Sv; Andres et al. 2008). Subinertial (2–10 days) variability is in the range of 2–3 Sv and shows amplification at the period of Helmholtz resonance (3–5 days) between the East Sea and the Pacific Ocean (Lyu et al. 2002). It is forced by atmospheric pressure disturbances because this subinertial period is too short for sea level inside the East Sea to respond isostatically, due to flow restrictions at the narrow and shallow straits (Nam et al. 2004; Lyu and Kim 2005; Park and Watts 2005; Kim and Fukumori 2008; see also Sect. 5.2). Seasonally, the volume transport is maximum from summer to autumn and minimum from winter to spring, with monthly standard deviation of about 1 Sv (Fig. 2.8; Teague et al. 2002; Lyu and Kim 2003; Takikawa et al. 2005). Interannual variability was reported to be as strong as seasonal variability (Kim et al. 2004).

Large-scale wind forcing over the North Pacific is known to be mainly responsible for the mean (Tsujino et al. 2008) and seasonal to interannual variability (Lyu and Kim 2005; Tsujino et al. 2008; Ma et al. 2012; see also Sect. 4.5). Local monsoonal wind forcing plays an additional role to modify the seasonal cycle of the TWC transport (Moon et al. 2009; Ma et al. 2012; Cho et al. 2013). It is notable that wind stress to the east of Soya Strait (over the Okhotsk Sea) was shown to be also important from the numerical modeling studies (Kim and Fukumori 2008; Tsujino et al. 2008).

The origin of the TWC is known to be the Kuroshio in the East China Sea (Nitani 1972; Lie et al. 1998) or the Taiwan Warm Current from the Taiwan Strait (Beardsley et al. 1985; Fang et al. 1991). Recent studies appear to agree that the contribution of the Kuroshio is larger in winter and that of the Taiwan Warm Current is larger in summer (Isobe 2008 and references therein). Cho et al. (2009) quantitatively showed that about 83 % of the volume transport through the Korea Strait is from the Kuroshio in winter and about 66 % comes from the Taiwan Warm Current in summer. Park et al. (2013) argued, however, that the branch current west of Kyushu could be overestimated in numerical modeling studies due to complex flow patterns, and consequently the Taiwan Warm Current is responsible for more than half of the TWC transport throughout the year.

In delivering warm water from the south, the TWC transports heat through the Korea Strait into the East Sea. Isobe et al. (2002), using observational data, calculated annual mean heat transport through the Korea Strait to be 0.17 PW (1PW = 1015 W). A recent numerical modeling study showed that about 0.21 PW of heat should be transported through the Korea Strait, based on calculation of the oceanic heat budget over the East China Sea (Liu et al. 2010). These estimates are about one-tenth of the heat transport by the Kuroshio in the East China Sea (1.69 PW; Zhang et al. 2012).
Fresh water from the East China Sea is also delivered by the TWC to the East Sea through the Korea Strait. Isobe et al. (2002) estimated the freshwater transport as to be 3.3×10^4 m3 s$^{-1}$ and suggested that at least 70% of total river discharge around the Yellow and East China Seas flows into the East Sea. The Changjiang discharge accounts for about 90% of this total river discharge and exhibits large seasonal variations with maximum in July and minimum in January (Chen et al. 1994). Salinity in the Korea Strait (both western and eastern channels) is correlated with the Changjiang discharge at interannual time scales (Senjyu et al. 2006). Wind stress over the East China Sea also affects salinity variation in the Korea Strait, particularly in the western channel, by modifying currents in the Cheju Strait (Senjyu et al. 2009).

The TWC also transports nutrients and other materials that greatly affect biological productivity in the East Sea (Onitsuka et al. 2007; Kim et al. 2013). Direct estimates of material transports through the straits are sparse due to the lack of concentration and transport data. Repeated observations in the eastern channel showed high nutrient transports in summer and autumn (Morimoto et al. 2009) and large interannual variability (Morimoto et al. 2012). For a complete understanding of material transports in the Korea Strait, it is necessary to conduct hydrographic observations simultaneously in both the western and eastern channels. Observations at the western channel are particularly important as the current in the western channel is stronger than that in the eastern channel (Fig. 2.8) and water masses together with materials originating from the Yellow Sea and the East China Sea mainly pass through the western channel (Chung et al. 2000; Teague et al. 2002; Takikawa et al. 2005).

There is a water mass not delivered by the TWC: Korea Strait Bottom Cold Water (KSBCW), a cold (<10 °C) water mass found mainly in the bottom layer of the western channel originating in the northern region of the East Sea (see also Sect. 3.3.2). It is observed within 70 km of the Korean coast almost throughout the year (Johnson and Teague 2002; Kim et al. 2006). Using simultaneous temperature and current data, Kim et al. (2006) showed that the bottom temperature of KSBCW decreased when the southwestward bottom current strengthened (maximum 15 cm s$^{-1}$ of subtidal velocity). The KSBCW also exhibits interannual variations (Min et al. 2006; Na et al. 2010) associated with changes of upper water temperature, particularly in the southwestern region of the East Sea (Yun et al. 2004; Na et al. 2010).

2.4.2 Tsugaru Strait and Soya Strait

The Tsugaru Strait is about 30 km wide and 110 km long (narrower and shorter than the Korea Strait) with a sill depth of 130 m (Fig. 2.7). The eastward outflow to the Northwestern Pacific through the Tsugaru Strait is a part of the TWC system in the East Sea and is called the Tsugaru Warm Current. Continuous observation of currents across the strait using a vessel-mounted Acoustic Doppler Current Profiler...
Forcings (ADCP) (Table 2.2) has improved our understanding of the mean and temporal variations of the Tsugaru Strait throughflow. Tidal currents are well known to be strong with maximum speeds exceeding 100 cm s\(^{-1}\) (Onishi et al. 2004), comparable to or greater than those in the Korea Strait. Luu et al. (2011) pointed out that the tidal residual current is not negligible (up to about 30 cm s\(^{-1}\)). Maximum subtidal current is about 130 cm s\(^{-1}\) near the middle of the strait where bottom depth is deeper than 200 m (Ito et al. 2003). Mean volume transport is estimated to be about 1.5 Sv (Toba et al. 1982; Onishi and Ohtani 1997; Ito et al. 2003; Nishida et al. 2003).

The Soya Strait is about 40 km wide and less than 20 km long with a sill depth of 55 m (narrowest, shortest, and shallowest among the three major straits). The southeastward (along the coast of Hokkaido, Fig. 2.7) outflow to the Okhotsk Sea through the Soya Strait is a part of the TWC system and is called the Soya Warm Current. Tidal currents are not strong compared to those in the Korea and Tsugaru Straits, and diurnal tidal constituents are dominant (Aota and Matsuyama 1987). Maximum subtidal currents are comparable to those in the Korea and Tsugaru Straits, being about 100–120 cm s\(^{-1}\) in summer and autumn (Matsuyama et al. 2006; Ebuchi et al. 2006, 2009; Fukamachi et al. 2008, 2010). Mean transport is estimated to be about 1 Sv (Fukamachi et al. 2008) with large interannual variability (Onishi and Ohtani 1997; Fukamachi et al. 2010).

In terms of mean volume transports, outflows through the Tsugaru and Soya Straits are balanced by the inflow through the Korea Strait, thus about 60–70 % of the inflow volume flows out through the Tsugaru Strait and the rest flows out through the Soya Strait (Na et al. 2009 and references therein). However, the annual range of the transport through the Tsugaru Strait (about 0.4 Sv; Nishida et al. 2003) appears to be about half of that through the Soya Strait (about 1 Sv; Fukamachi et al. 2008). Cho et al. (2009) conducted high-resolution numerical modeling in the Northwestern Pacific region and showed that near-steady seasonal transport through the Tsugaru Strait contributes to a seasonally-varying ratio of Tsugaru Strait outflow transport to that of the Soya Strait that is high in winter and low in summer (Fig. 2.9). Seung et al. (2012) applied Godfrey’s island rule (Godfrey 1989) with bottom friction and explained that the relatively small seasonal variability of Tsugaru Strait transport is because the latitude of zero-wind-stress curl over the North Pacific is located east of Hokkaido (between the Tsugaru and Soya Straits, see also Sect. 4.5).

The Tatarsky Strait is another strait, located in the northernmost region of the East Sea. Volume transport through this narrow (about 10 km) and shallow (about 10 m) strait is known to be negligible because of the cyclonic recirculation (about 2 Sv) associated with the Liman Current (Riser et al. 1999). The circulation near the Tatarsky Strait, however, could play a significant role in the freshwater budget in the East Sea, due to discharge from the Amur River (Yanagi 2002; Yoon and Kim 2009). Thus, a better knowledge of the circulation in the Tatarsky Strait may contribute to complete understanding of freshwater and salt budgets in the East Sea. Moreover, it could indirectly affect the inflow and outflow of the East Sea by altering surface circulation in the northern region (Park et al. 2006b; Yoon and Kim 2009).
2.4.3 Long-Term Variability

Interannual to decadal variability of the boundary transports appears to be as large as seasonal variability (about 1 Sv of volume transport; Kim et al. 2004; Lyu and Kim 2005; Morimoto et al. 2012), but, compared to seasonal variability, it is not well understood. Sea level differences (SLD) from tide gauge data (Fig. 2.7) could provide multi-decadal proxies for volume transport variations and allow simultaneous comparison of the transports at different straits. SLD across the Korea Strait showed a good linear relationship with the Korea Strait volume transport (Lyu and Kim 2003; Takikawa and Yoon 2005). In the case of the Tsugaru Strait, both SLD across the Tsugaru Strait (Nishida et al. 2003) and SLD between inside and outside the East Sea (Ito et al. 2003) agreed with the Tsugaru Strait transport variations. Along-strait SLD could also be used to estimate transport variations in the case of the Soya Strait (Fukamachi et al. 2008, 2010).

Long-term time series estimates can also be used to examine relationships between East Sea variability and larger-scale variability in the Northwestern Pacific (see also Sect. 3.4). The TWC may contribute as a link between upper-ocean heat content variability in the East Sea and that in the Northwestern Pacific on a decadal time scale (Na et al. 2012). A physical-biogeochemical modeling study (Liu and Chai 2009) indicated that nutrient transport in the East Sea is connected to large-scale changes in the Pacific Decadal Oscillation (PDO), which is thought to be related to TWC variability (Gordon and Giulivi 2004), and hence to Kuroshio variability in the East China Sea (Andres et al. 2009). During positive phases of the PDO, Kuroshio transport in the East China Sea tends to decrease and TWC transport to increase, which in turn delivers more buoyant subtropical water to the East Sea. The observed long-term increasing trend of inorganic nitrogen in the East Sea is also considered to have been mainly influenced by influx through the Korea Strait (Kim et al. 2013) rather than local nitrogen flux from atmosphere (Kim et al. 2011).
2.5 Summary and Discussion

We have given an overview of current knowledge of East Sea forcings such as wind field, surface heat flux, and boundary flux through the three straits connecting to the open ocean. One of the dominant features of wind speeds in the East Sea is occasional outbreaks of very cold Siberian air. Such cold-air outbreaks through the orographic gap near Vladivostok have been studied intensively to investigate their impacts on the circulation in the basin. They play an important role in generating cold bottom water formation south of the Peter the Great Bay (see Fig. 1.1) through brine rejection during sea ice formation (Talley et al. 2003). In addition, they have a significant effect on the circulation of the cyclonic gyre in the Japan Basin. Wind stress curl and divergence fields in the path of cold continental air outbreaks are modified by wind-sea surface temperature coupling across the subpolar front due to changes in MABL stability.

In contrast with the cold-air outbreak through Vladivostok, the role of strong winds over East Korea Bay during the outbreak period has not been thoroughly studied. The winds are expected to control relatively small-scale cyclonic and anticyclonic circulation and mesoscale eddies in the local region. In addition, the relationship between wind forcings and subpolar frontal dynamics should be further investigated (Yoshikawa et al. 2012). SST-wind coupling and its feedback mechanisms near the frontal region have not been vigorously studied and need further studies. Year-to-year variation and long-term variability of wind forcing and its relation to climate change should be studied continuously. Issues related to climate change and local changes in wind forcings should be also considered further in the future.

The East Sea gains heat from April to August and loses heat in the other months. The annual mean net heat flux is negative with a large range of 25–108 W m$^{-2}$ according to previous estimates. The East Sea’s inflow–outflow system compensates for the net heat loss. The winter (December–February) net heat losses, which are important in deep water formation in the northern East Sea and frontal subduction along the subpolar front, range from 250 to 330 W m$^{-2}$. Latent and sensible heat fluxes are mainly responsible for net heat losses in winter due to the winter monsoon with intermittent strong cold-air outbreaks. The net loss becomes enhanced when cold and dry air sweeps over the warm sea surface south of the subpolar front; this results in spatial differences in net and latent heat fluxes in winter. In summer, the net heat flux is mainly determined by radiation components, with heat loss components, including long wave cooling, showing their annual minima. The summertime (June–August) net heat flux ranges from 90 to 155 W m$^{-2}$.

Heat flux estimates presented here share some common features, such as their seasonal variations, but there are also considerable quantitative differences in all heat flux components. Interannual variation and long-term trends of surface heat fluxes are poorly known in the East Sea, although many studies have documented long-term changes and variability of deep water masses that are mainly formed
in the northern East Sea during winter. It needs to be determined whether or not long-term variabilities of water properties and deep circulation are associated with varying surface air-sea fluxes. Atmospheric reanalysis products have been widely used to understand spatiotemporal variation of air-sea fluxes; they will also be very useful in the East Sea, but must be used with caution. Intercomparison of different products, and quantitative evaluation of the products based on in situ measurements, are prerequisites in the use of any specific product.

There has been significant progress in understanding boundary flux in the East Sea since continuous monitoring started in the late 1990s or early 2000s, along with extensive studies of currents and circulation in the straits. Outflows through the Tsugaru and Soya Straits are closely linked with inflow through the Korea Strait (2.6 Sv) because of the semi-enclosed nature of the East Sea and negligible flow through the Tatarsky Strait. Seasonally, the inflow and outflows are generally large in summer to autumn and small in winter to spring with the range of about 1 Sv. Seasonal variability in the Korea Strait tends to be reflected more in the Soya Strait rather than in the Tsugaru Strait, although mean outflow through the Tsugaru Strait is larger than that through the Soya Strait (Fig. 2.9). The TWC system in the East Sea is controlled by large-scale and local wind forcing on time scales longer than a month. Interannual variability (comparable to seasonal variability) and decadal variability of the TWC system needs further study along with its relationship to Northwestern Pacific variability.

Material transports in the East Sea have been less studied than volume transports, because of limited observations. Although strongly related to volume transport through the straits, other factors, such as intrusion of different water masses, alter material transport significantly. Moreover, comparison of material transports at different straits has been very limited. Thus, simultaneous observations at the straits including hydrographic and biogeochemical sampling is most needed for future progress in understanding boundary transports in the East Sea.

Acknowledgments Authors would like to thank Eun-Young Lee (Seoul National University) for her editorial work. This study was supported partly by EAST-I project of the Ministry of Oceans and Fisheries of Korea.

References

Morimoto A, Watanabe A, Onitsuka G et al (2012) Interannual variations in material transport through the eastern channel of the Tsushima/Korea Straits. Prog Oceanogr 105:38–46

K.-A. Park et al.

Senjyu T, Han IS, Matsui S (2009) Connectivity between the interannual salinity variation in the western channel of the Tsushima Strait and hydrographic conditions in the Cheju Strait. J Oceanogr 65:511–524

Forcings

Oceanography of the East Sea (Japan Sea)
Chang, K.-I.; Zhang, C.-I.; Park, C.; Kang, D.-J.; Ju, S.-J.;
Lee, S.-H.; Wimbush, M. (Eds.)
2015, XVI, 460 p. 150 illus., 68 illus. in color., Hardcover
ISBN: 978-3-319-22719-1