It seems only yesterday when, in 1975, a bright star rose suddenly above the horizon of Separation Science. Three labs reported a two-dimensional (2-D, charge coupled orthogonally to mass separation) technique, for analysis of complex protein systems, simultaneously and independently, although most of the credit went just to O'Farrell [1–3]. Perhaps because his system was the most elaborate: in fact, he was able to resolve and detect about 1100 different proteins from lysed *E. coli* cells on a single 2-D map and suggested that the maximum resolution capability might have been as high as 5000 different proteins. Apart from the meticulous attention to detail, major reasons for the advance in resolution obtained by O'Farrell, compared to earlier workers, included the use of samples labeled with 14C or 35S to high specific activity, and the use of thin (0.8 mm) gel slabs for the second dimension, which could then be dried down easily for autoradiography. This detection method was able to reveal protein zones corresponding to one part in 10^7 of the sample (usually 1–20 μg was applied initially, since higher loads caused zone spreading, although up to 100 μg could be loaded). Coomassie blue, in comparison, was about 3 orders of magnitude less sensitive and could reveal only about 400 spots. For the first dimension, O'Farrell adopted gel rods of 13 cm in length and 2.5 mm in diameter. The idea was to run samples fully denatured, in what became known as the “O'Farrell lysis buffer” (9 M urea, 2 % Nonidet P-40, 2 % β-mercaptoethanol, and 2 % carrier ampholytes, in any desired pH interval). For the second SDS-PAGE dimension, O'Farrell [1] used the discontinuous buffer system of Laemmli [4] and, for improved resolution, a concave exponential gradient of polyacrylamide gel (usually in the intervals 9–15 or 10–14 %T, although wide porosity gradients, e.g., 5–22.5 %T, were also suggested). It is thus seen that, since its very inception, O'Farrell carefully selected all the best conditions available at the time; it is no wonder that his system was adopted as such in the avalanche of reports that soon followed (as for this writing, his paper has received about 20,000 citations!). O'Farrell 2-D mapping protocol became the basic methodology for what we would call today “proteomics” of any tissue or biological fluid, where thousands of components were suspected to be present. It remained the gold standard for such investigations at least for the following 25 years, up to the third millennium.

When I stated that the O'Farrell 2-D mapping introduced in 1975 had been a bright star I affirmed a widely held opinion, but it was not a polar star for us navigators in the starry sky represented by the polypeptides display in the 2-D gel. It was wishful thinking, at best. There was indeed a major impediment in this methodology, namely the erratic spot profile obtained by performing the first dimension in conventional IEF with soluble carrier ampholytes (CA), a la Svensson-Vesterberg, if you like [5]. There were no fixed stars in the firmament of 2-D maps: the apparent pI values kept changing, from batch to batch of CAs and, of course, from brand to brand, as manufactured by different companies (a chaotic synthesis, as you might remember) [6]. The situation was so frustrating that the Andersons recommended carbamylation train standards for mapping the pH gradient course and even preparing large volumes of stock solutions of CAs, obtained by carefully blending the various commercial products. The help was soon at hand, since in 1982 Bjellqvist et al. [7] launched another supernova in the sky of bioanalysis: immobilized pH gradients (IPGs), which were soon demonstrated to be able to overcome all these problems, while affording
exquisite resolution when run in narrow and ultra-narrow pH ranges. IPGs went largely unnoticed for about a decade, even though they brought about some out-of-(terrestrial) space results in bio-separations, including a resolution limit of $\Delta pI = 0.001$ for IPGs, vs. a maximum resolving power of conventional IEF in soluble carrier ampholytes of $\Delta pI = 0.01$, one order of magnitude less. Together with that, IPGs brought “democracy” for the first time in electrokinetic processes. Up to their introduction, 2-D maps had been conducted only in linear pH gradients, which penalize acidic proteins, jammed in the overcrowded zone of the pH 4–6 region, where >60% of all proteins focus. Already in 1985, we were able to describe a broad range, nonlinear IPG, strongly flattened in the crowded region, with a sharp upward turn at alkaline pH values [8]; these ranges are by far the most popular in today 2-D map analyses. Needless to say, IPGs proved to offer a loading ability much superior to that of conventional IEF. Gels could be massively overloaded without isoelectric precipitations or smears. This unique property could be exploited in 2-D maps for detecting low-abundance proteins; whereas the typical protein load in 18 \times 20 cm gel slabs was up to 0.5 mg, with IPGs the load could be incremented up to 10 mg per gel [9]!

Two-dimensional maps represent only one half of the proteomics panorama of the present day (excluding from the count mass spectrometry, which of course has an enormous significance in this field). The other half is a chromatographic approach developed by Yates III and coworkers [10, 11], consisting of an online 2-D ion-exchange column coupled to RP-HPLC, termed MudPit, for separating tryptic digests of 80S ribosomes from yeast. The acidified peptide mixture is loaded onto a strong cation exchanger (SCX) column; discrete eluate fractions are then fed onto a RP (reversed-phase) column, whose effluent is injected directly into a mass spectrometer. This iterative process is repeated 12 times by using increasing salt gradient elution from the SCX bed and an increasing organic solvent concentration from the RP beads (typically a C$_{18}$ phase). In a total yeast lysate, the MudPit strategy allowed the identification of almost 1500 proteins [11]. There are major differences, though, between these two methods, in that the first one (2-D gel mapping) consists in separating intact, proteins, as found in the original tissue in which they were expressed, whereas in the second, chromatographic approach, only digested species are analyzed, which means that subtle differences in expression (e.g., deamidation, proteolytic cleavage products originating in vivo) are usually lost. Ideally, though, a lab should utilize both approaches, since it is claimed that the advantage of MudPit (an unfortunate acronym for such a powerful technique, since it literally means “hole full of mud”) would be the ability of detecting also scarcely soluble membrane proteins and very acidic or basic species whose pI values would be outside the range of IEF/IPG. It turns out, though, that a kind of dichotomy developed, by which in the USA MudPit is mostly adopted (on the grounds that it is mostly an instrumental approach, involving little labor from lab technicians) whereas on this side of the Atlantic 2-D gel approaches are still much in vogue.

What should I state about the present book? In principle, there are so many books already published describing in detail all methodological approaches, tips and hints on 2-D gel slabs, that an additional one would seem to be pleonastic. Yet, by looking at the table of contents and at the list of chapters (no less than 15), it is easy to note that this book is a very special one in the panorama of manuals published up to the present. Whereas all the others are “cookbooks” giving just about only recipes, this one, on the contrary, gives mostly and perhaps only theory, a field too much ignored in all treatises on 2-D gel maps. So, I believe that this is a most useful and unique approach, in that it would help users to avoid common pitfalls due to ignorance of the basic theoretical mechanisms underlying the technique, including data handling and proper tools for spot analysis. Of course potential users had
Spacecraft Momentum Control Systems
Leve, F.A.; Hamilton, B.J.; Peck, M.A.
2015, XIX, 247 p., Hardcover
ISBN: 978-3-319-22562-3