3 Mechanisms of Radon Emanation and Long-Term Radon Flux Studies 37
 3.1 Introduction .. 37
 3.2 Comparison of Recoil Length to Diffusion Length for 222Rn .. 38
 3.3 Radon Emanation Rates from Earth’s Surface .. 39
 3.3.1 Radon Diffusive Transport in Soil Pores .. 39
 3.3.2 Diffusive Flux into the Atmosphere ... 40
 3.4 Mechanisms of and Factors Affecting Radon Release Rates 42
 3.4.1 Mechanisms of Radon Release from Mineral Grains 42
 3.4.2 Factors that Affect Radon Emanation Rates in the Environment 43
 3.4.3 Radon in Emanation in Lunar Surface .. 48
 3.4.4 Methods of Radon Flux Measurements ... 49
 3.4.5 Radon Flux from Soils Using Terrestrial Gamma Radiation 49
 3.4.6 Radon Ocean Flux Density .. 51
 3.4.7 Radon Flux Studies from Continents .. 53
 3.4.8 210Pb Inventory-Based Long-Term Global 222Rn Flux Estimate and Its Limitation 56
 3.5 Global Radon Emanation Rate Curve .. 57
 3.6 Summary and Future Research Direction .. 59
 References .. 60

4 Radon: A Tracer for Atmospheric Studies .. 63
 4.1 Introduction .. 63
 4.2 222Rn Activity Variations in the Planetary Boundary Layer 65
 4.2.1 222Rn Activity Variations in the PBL Above Land ... 65
 4.2.2 222Rn Activity Variations in the PBL Above Ocean ... 66
 4.3 Radon Concentrations in Polar Regions ... 67
 4.4 Vertical Profiles of Atmospheric 222Rn .. 67
 4.5 Case Studies: Temporal and Spatial Profiles of 222Rn .. 70
 4.6 Variations in the Inventories of 222Rn in the Atmosphere 72
 4.7 Role of Atmospheric Rivers in the Transport of 222Rn and Radon Storms 74
 4.8 Modeling the Atmospheric Distribution of 222Rn .. 75
 4.9 Application of 222Rn as Indian Monsoon Air Circulation Tracer 78
5 Applications of Radon Progeny in Atmospheric Studies

5.1 Introduction

5.2 Sources, Fluxes and Distributions of Radon and Its Progeny

5.2.1 Radon Flux to and Distribution in the Atmosphere

5.2.2 Activities of 210Po and 210Pb in Surface Air and Upper Atmosphere

5.2.3 Importance of Long-Range Atmospheric Desert Dust to the Activities of 210Po and 210Pb

5.2.4 Vertical Profiles of 210Pb Activity Above Cloud Cover

5.2.5 Volume-Weighted Activities of 210Pb and 210Po

5.2.6 Depositional Fluxes of 210Po and 210Pb

5.2.7 Specific Activity and Depositional Flux of 210Po

5.2.8 210Po/210Pb Activity Ratios in the Bulk Precipitation and Aerosols

5.2.9 Dry Depositional Flux of 210Po and 210Pb

5.3 Global Fallout Curve for 210Pb

5.4 Applications of Radon Progeny to Aerosol Deposition Velocity and Residence Times

5.4.1 Depositional Velocities of Aerosols Using Daughter Products of 222Rn

5.4.2 Washout Ratios Using Daughter Products of 222Rn

5.4.3 Residence Times of Aerosols Based on the Daughter Products of 222Rn

5.5 Global Atmospheric Inventory of 210Po and 210Pb

5.6 Summary and Future Direction

References

6 Radon: A Geochemical and Geophysical Tracer in Marine System

6.1 Introduction

6.2 Solubility of Radon in Seawater

6.3 222Rn as a Tracer in Rivers and Estuaries

6.4 Activities of 222Rn in Coastal, Continental Margins and in Surface Mixed Layers in the Open Ocean

6.5 Vertical Profiles of 222Rn concentration in the Oceanic Water Column
6.6 Applications of Radon at Interfaces 127
 6.6.1 222Rn as a Tracer of Gas Exchange Rates at Air-Sea Interface 127
 6.6.2 222Rn as a Tracer of Diapycnal and Isopycnal Mixing 132
 6.6.3 Inventories and Fluxes of Radon-222 in the Oceanic Water and Sediment Column 135
 6.6.4 Concentrations of 222Rn in Hydrothermal Vent 137
6.7 Quantification of Submarine Groundwater Discharge Using 222Rn as a Tracer 138
6.8 222Rn Concentrations and its Utility as a Tracer in Lakes 139
6.9 Conclusion and Future Research Direction 140
References ... 141

7 Progeny of Radon (210Pb) as a Tracer and Chronometer in Continents and Aqueous Systems 145
 7.1 Introduction ... 145
 7.2 Geochemical Behavior of 210Pb in the Environment 148
 7.3 Variations in the Source Term of Unsupported 210Pb in the Environment: Inter-annual Atmospheric Depositional Fluxes of 210Pb 149
 7.4 Applications of 210Pb .. 149
 7.4.1 210Pb as a Tracer for Soil Erosion Studies 149
 7.4.2 Sediment Focusing and Erosion Using 210Pb as a Tracer 150
 7.4.3 210Pb as a Tracer of Ice Rafted Sediments (IRS) in the Arctic Ocean 151
 7.4.4 210Pb as a Geochronometer .. 152
 7.4.5 Numerical Sediment Mixing Model .. 158
 7.4.6 Residence Time Pb in the Oceanic Water Column 160
 7.5 Summary and Future Research Direction .. 162
References ... 163

8 Radon in Groundwater System .. 167
 8.1 Introduction ... 167
 8.2 Activities of 222Rn and Ra Isotopes in Groundwater 168
 8.2.1 Sources and Sinks of 222Rn in Groundwater 168
 8.2.2 Equilibrium Radon Concentration in an Aquifer 169
 8.2.3 Case Study: Temporal and Spatial Variations of 222Rn Concentration in Groundwater in a Regional Scale. 170
 8.3 Major Sources of 222Rn to Groundwater .. 171
 8.3.1 Supply of 222Rn from Its Dissolved Parent 226Ra in Groundwater 171
 8.3.2 Supply of 226Ra and 222Rn by Weathering 174
8.3.3 Supply from Recoil .. 175
8.3.4 Calculations of Retardation Factors 176
8.4 Applications of Radon as a Tracer and Chronometer 176
 8.4.1 Radon as a Tool to Date Groundwater 176
 8.4.2 Radon as a Tracer for Quantifying the Infiltration of Meteoric Water 177
 8.4.3 Radon as a Recoil Flux Monitor for the Determination of Adsorption/Desorption Rate Constants and Retardation Factor for Radium 178
 8.4.4 Radon as a Tracer for Monitoring NAPL Contamination in Groundwater 180
 8.4.5 Partition Coefficients of Commonly Occurring NAPL and DNAPL 181
 8.4.6 Subsurface Horizontal Transport of Radon with NAPL Partitioning 183
 8.4.7 Other Applications of Radon in Groundwater 185
8.5 Future Research ... 186
References ... 186

9 Radon: A Tracer for Geochemical Exploration 189
 9.1 Introduction .. 189
 9.2 Attenuation of Gamma-Rays Emitted from Radon Daughter Nuclides 190
 9.3 Transport of Radon in Subsurface Environment 191
 9.3.1 Radon Transport Processes Below Earth’s Surface 191
 9.3.2 The Effect of Meteorological Parameters on the Release of Radon from Subsurface 194
 9.3.3 Vertical Transport of Radon in Subsurface Soil 195
 9.4 Radon as Geochemical Exploration Tracer 196
 9.4.1 Radon as a Tool in Uranium Exploration 196
 9.4.2 Limitations in Using 222Rn as a Prospecting Tool 199
 9.4.3 Radon as a Tool for Hydrocarbon Exploration 199
 9.4.4 Detection of Natural Gamma Radiation in Petroleum Exploration boreholes 201
 9.5 Future Directions .. 202
References ... 202

10 Radon as a Tracer for Earthquake Studies 205
 10.1 Introduction .. 205
 10.2 Mechanism of Vertical Transport of 222Rn in Seismically-Active Areas 206
 10.3 Variations in the Activities of Radon in Groundwater and Soil 210
 10.3.1 Long Term Monitoring of Radon Activities 210
10.4 Use of Helium/Radon Ratio as a Precursor for Predicting Earthquakes

10.5 Case Studies

10.5.1 Kobe Earthquake (17 January 1995, Magnitude M = 7.2) and Other Earthquake Studies in Japan

10.5.2 Earthquake Studies in Southern California, Alaska and Hawaii in the United States

10.5.3 Earthquake Studies in North-Western Himalaya

10.5.4 Earthquake Studies in Turkey

10.5.5 Earthquake and Volcanic Eruption Studies from Other Regions of the World

10.6 Conclusion and Future Research Direction

References

11 Radon: A Human Health Hazard in the Environment

11.1 Introduction

11.2 Historical Development of Studies Related to Indoor Radon as Health Hazard

11.3 Human Lung-Cancer Deaths Related to Radon Exposure

11.4 Reference Level for Indoor Radon

11.5 Factors that Affect the Radon Entry Indoor Air

11.6 Mass Balance of Indoor Radon

11.7 Burden of Lung Cancer from Indoor Radon and Its Progeny

11.8 Radon-220 and Its Decay Products and Their Health Hazards

11.8.1 Effects of Pressure-Driven Advective Flow and Diffusion on the Indoor Activities of ^{222}Rn and ^{220}Rn

11.9 Radon Prevention and Mitigation

11.9.1 Basic Mitigation Methods for Radon

11.9.2 Design Criteria of Radon Systems to Minimize Indoor Radon Levels

11.10 Future Research

References

Index
Radon: A Tracer for Geological, Geophysical and Geochemical Studies
Baskaran, M.
2016, XX, 260 p. 76 illus., 27 illus. in color., Hardcover
ISBN: 978-3-319-21328-6