Contents

1 Introduction ... 1

Part I Background

2 Convex Polyhedra .. 7
 2.1 The Space \mathbb{R}^n ... 7
 2.2 System of Linear Inequalities 14
 2.3 Convex Polyhedra .. 19
 2.4 Basis and Vertices .. 41

3 Linear Programming .. 49
 3.1 Optimal Solutions .. 49
 3.2 Dual Problems ... 59
 3.3 The Simplex Method ... 67

Part II Theory

4 Pareto Optimality .. 85
 4.1 Pareto Maximal Points ... 85
 4.2 Multiobjective Linear Problems 102
 4.3 Scalarization ... 107
 4.4 Exercises ... 112

5 Duality ... 119
 5.1 Dual Sets and Dual Problems 119
 5.2 Ideal Dual Problem ... 127
 5.3 Strong Dual Problem ... 131
 5.4 Weak Dual Problem ... 139
 5.5 Lagrangian Duality ... 144
5.6 Parametric Duality .. 167
5.7 Exercises .. 176

6 Sensitivity and Stability ... 183
6.1 Parametric Convex Polyhedra 183
6.2 Sensitivity .. 195
6.3 Error Bounds and Stability 200
6.4 Post-optimal Analysis .. 215
6.5 Exercises .. 234

Part III Methods

7 Multiobjective Simplex Method 241
7.1 Description of the Method 241
7.2 The Multiobjective Simplex Tableau 247
7.3 Exercises .. 258

8 Normal Cone Method ... 261
8.1 Normal Index Sets .. 261
8.2 Positive Index Sets .. 266
8.3 The Normal Cone Method 272
8.4 Exercises .. 284

9 Outcome Space Method .. 289
9.1 Analysis of the Efficient Set in the Outcome Space 289
9.2 Free Disposal Hull .. 293
9.3 Outer Approximation .. 297
9.4 The Outcome Space Algorithm 299
9.5 Exercises .. 305

Bibliographical Notes .. 309

References ... 313

Index .. 323
Multiobjective Linear Programming
An Introduction
Luc, D.T.
2016, XII, 325 p. 30 illus., Hardcover
ISBN: 978-3-319-21090-2